ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.13519
  4. Cited By
GPSFormer: A Global Perception and Local Structure Fitting-based
  Transformer for Point Cloud Understanding

GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding

18 July 2024
Changshuo Wang
Meiqing Wu
S. Lam
Xin Ning
Shangshu Yu
Ruiping Wang
Weijun Li
T. Srikanthan
ArXivPDFHTML

Papers citing "GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding"

6 / 6 papers shown
Title
Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Younggun Kim
Beomsik Cho
Seonghoon Ryoo
Soomok Lee
3DPC
91
0
0
27 Jan 2025
Multimodality Helps Few-shot 3D Point Cloud Semantic Segmentation
Multimodality Helps Few-shot 3D Point Cloud Semantic Segmentation
Zhaochong An
Guolei Sun
Yun Liu
Runjia Li
Min Wu
Ming-Ming Cheng
Ender Konukoglu
Serge J. Belongie
64
4
0
29 Oct 2024
Regress Before Construct: Regress Autoencoder for Point Cloud
  Self-supervised Learning
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
Yang Liu
C. L. P. Chen
Can Wang
Xulin King
Mengyuan Liu
3DPC
24
7
0
25 Sep 2023
Multi-Modal Cross-Domain Alignment Network for Video Moment Retrieval
Multi-Modal Cross-Domain Alignment Network for Video Moment Retrieval
Xiang Fang
Daizong Liu
Pan Zhou
Yuchong Hu
77
35
0
23 Sep 2022
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
13,886
0
02 Dec 2016
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
164
1,926
0
24 Oct 2016
1