ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.14662
  4. Cited By
Relational Composition in Neural Networks: A Survey and Call to Action

Relational Composition in Neural Networks: A Survey and Call to Action

19 July 2024
Martin Wattenberg
Fernanda Viégas
    CoGe
ArXivPDFHTML

Papers citing "Relational Composition in Neural Networks: A Survey and Call to Action"

5 / 5 papers shown
Title
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
81
7
0
06 Feb 2025
Talking Heads: Understanding Inter-layer Communication in Transformer Language Models
Talking Heads: Understanding Inter-layer Communication in Transformer Language Models
Jack Merullo
Carsten Eickhoff
Ellie Pavlick
38
2
0
13 Jun 2024
The Geometry of Truth: Emergent Linear Structure in Large Language Model
  Representations of True/False Datasets
The Geometry of Truth: Emergent Linear Structure in Large Language Model Representations of True/False Datasets
Samuel Marks
Max Tegmark
HILM
91
164
0
10 Oct 2023
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
117
314
0
21 Sep 2022
Compositionality as Lexical Symmetry
Compositionality as Lexical Symmetry
Ekin Akyürek
Jacob Andreas
CoGe
34
8
0
30 Jan 2022
1