ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15186
  4. Cited By
A Survey on Employing Large Language Models for Text-to-SQL Tasks

A Survey on Employing Large Language Models for Text-to-SQL Tasks

21 July 2024
Liang Shi
Zhengju Tang
Nan Zhang
Xiaotong Zhang
Zhi Yang
ArXivPDFHTML

Papers citing "A Survey on Employing Large Language Models for Text-to-SQL Tasks"

19 / 19 papers shown
Title
Exploring Generative AI Techniques in Government: A Case Study
Exploring Generative AI Techniques in Government: A Case Study
Sunyi Liu
Mengzhe Geng
Rebecca Hart
LLMAG
36
0
0
06 Apr 2025
CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with
  Chain-of-Editions
CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions
Hanchong Zhang
Ruisheng Cao
Hongshen Xu
Lu Chen
Kai Yu
ReLM
LRM
38
4
0
04 May 2024
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Zeyu Han
Chao Gao
Jinyang Liu
Jeff Zhang
Sai Qian Zhang
136
301
0
21 Mar 2024
Benchmarking the Text-to-SQL Capability of Large Language Models: A
  Comprehensive Evaluation
Benchmarking the Text-to-SQL Capability of Large Language Models: A Comprehensive Evaluation
Bin Zhang
Yuxiao Ye
Guoqing Du
Xiaoru Hu
Zhishuai Li
Sun Yang
Chi Harold Liu
Rui Zhao
Ziyue Li
Hangyu Mao
LMTD
29
29
0
05 Mar 2024
Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL
  through Workflow Paradigm
Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow Paradigm
Yuanzhen Xie
Xinzhou Jin
Tao Xie
Mingxiong Lin
Liang Chen
Chenyun Yu
Lei Cheng
Chengxiang Zhuo
Bo Hu
Zang Li
43
18
0
16 Feb 2024
Break the Sequential Dependency of LLM Inference Using Lookahead
  Decoding
Break the Sequential Dependency of LLM Inference Using Lookahead Decoding
Yichao Fu
Peter Bailis
Ion Stoica
Hao Zhang
123
134
0
03 Feb 2024
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
Mayank Kothyari
Dhruva Dhingra
Sunita Sarawagi
Soumen Chakrabarti
36
14
0
02 Nov 2023
Can Large Language Models Be an Alternative to Human Evaluations?
Can Large Language Models Be an Alternative to Human Evaluations?
Cheng-Han Chiang
Hung-yi Lee
ALM
LM&MA
206
559
0
03 May 2023
A comprehensive evaluation of ChatGPT's zero-shot Text-to-SQL capability
A comprehensive evaluation of ChatGPT's zero-shot Text-to-SQL capability
Aiwei Liu
Xuming Hu
Lijie Wen
Philip S. Yu
LMTD
AI4MH
76
143
0
12 Mar 2023
Binding Language Models in Symbolic Languages
Binding Language Models in Symbolic Languages
Zhoujun Cheng
Tianbao Xie
Peng Shi
Chengzu Li
Rahul Nadkarni
...
Dragomir R. Radev
Mari Ostendorf
Luke Zettlemoyer
Noah A. Smith
Tao Yu
LMTD
109
195
0
06 Oct 2022
ReAct: Synergizing Reasoning and Acting in Language Models
ReAct: Synergizing Reasoning and Acting in Language Models
Shunyu Yao
Jeffrey Zhao
Dian Yu
Nan Du
Izhak Shafran
Karthik Narasimhan
Yuan Cao
LLMAG
ReLM
LRM
223
2,413
0
06 Oct 2022
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Xuezhi Wang
Jason W. Wei
Dale Schuurmans
Quoc Le
Ed H. Chi
Sharan Narang
Aakanksha Chowdhery
Denny Zhou
ReLM
BDL
LRM
AI4CE
297
3,163
0
21 Mar 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
780
0
14 Oct 2021
Exploring Underexplored Limitations of Cross-Domain Text-to-SQL
  Generalization
Exploring Underexplored Limitations of Cross-Domain Text-to-SQL Generalization
Yujian Gan
Xinyun Chen
Matthew Purver
72
76
0
11 Sep 2021
Natural SQL: Making SQL Easier to Infer from Natural Language
  Specifications
Natural SQL: Making SQL Easier to Infer from Natural Language Specifications
Yujian Gan
Xinyun Chen
Jinxia Xie
Matthew Purver
J. Woodward
J. Drake
Qiaofu Zhang
74
90
0
11 Sep 2021
PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding
  from Language Models
PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
Torsten Scholak
Nathan Schucher
Dzmitry Bahdanau
146
373
0
10 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,784
0
18 Apr 2021
SmBoP: Semi-autoregressive Bottom-up Semantic Parsing
SmBoP: Semi-autoregressive Bottom-up Semantic Parsing
Ohad Rubin
Jonathan Berant
126
148
0
23 Oct 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
223
4,424
0
23 Jan 2020
1