ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.15224
  4. Cited By
PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning

PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning

21 July 2024
Luca Corbucci
Mikko A. Heikkilä
David Solans Noguero
Anna Monreale
Nicolas Kourtellis
    FedML
ArXivPDFHTML

Papers citing "PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning"

8 / 8 papers shown
Title
Toward the Tradeoffs between Privacy, Fairness and Utility in Federated
  Learning
Toward the Tradeoffs between Privacy, Fairness and Utility in Federated Learning
Kangkang Sun
Xiaojin Zhang
Xi Lin
Gaolei Li
Jing Wang
Jianhua Li
25
4
0
30 Nov 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential
  Privacy
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning
PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning
Sikha Pentyala
Nicola Neophytou
A. Nascimento
Martine De Cock
G. Farnadi
26
17
0
23 May 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
64
181
0
06 Dec 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
Enforcing fairness in private federated learning via the modified method
  of differential multipliers
Enforcing fairness in private federated learning via the modified method of differential multipliers
Borja Rodríguez Gálvez
Filip Granqvist
Rogier van Dalen
M. Seigel
FedML
36
51
0
17 Sep 2021
Threats to Federated Learning: A Survey
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
186
432
0
04 Mar 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
1