ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.16674
  4. Cited By
KAN or MLP: A Fairer Comparison

KAN or MLP: A Fairer Comparison

23 July 2024
Runpeng Yu
Weihao Yu
Xinchao Wang
ArXivPDFHTML

Papers citing "KAN or MLP: A Fairer Comparison"

26 / 26 papers shown
Title
Conformalized-KANs: Uncertainty Quantification with Coverage Guarantees for Kolmogorov-Arnold Networks (KANs) in Scientific Machine Learning
Conformalized-KANs: Uncertainty Quantification with Coverage Guarantees for Kolmogorov-Arnold Networks (KANs) in Scientific Machine Learning
Amirhossein Mollaali
Christian Moya
Amanda A. Howard
Alexander Heinlein
P. Stinis
Guang Lin
26
0
0
21 Apr 2025
MLPs and KANs for data-driven learning in physical problems: A performance comparison
MLPs and KANs for data-driven learning in physical problems: A performance comparison
Raghav Pant
Sikan Li
Xingjian Li
Hassan Iqbal
Krishna Kumar
AI4CE
43
0
0
15 Apr 2025
Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
Ali Kashefi
T. Mukerji
3DPC
PINN
47
0
0
08 Apr 2025
Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study
Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study
Zeyuan Ma
Zhiyang Huang
Jiacheng Chen
Zhiguang Cao
Yue-jiao Gong
OffRL
81
2
0
23 Mar 2025
AF-KAN: Activation Function-Based Kolmogorov-Arnold Networks for Efficient Representation Learning
Hoang-Thang Ta
Anh Tran
57
0
0
08 Mar 2025
Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Songping Wang
Xinquan Yue
Yueming Lyu
Caifeng Shan
AAML
66
1
0
08 Mar 2025
TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting
TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting
Young-Chae Hong
Bei Xiao
Yangho Chen
AI4TS
61
0
0
25 Feb 2025
Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks
Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks
Yihang Gao
Michael K. Ng
Vincent Y. F. Tan
72
0
0
17 Feb 2025
Learnable polynomial, trigonometric, and tropical activations
Learnable polynomial, trigonometric, and tropical activations
Ismail Khalfaoui-Hassani
Stefan Kesselheim
59
0
0
03 Feb 2025
Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Ashim Dahal
Saydul Akbar Murad
Nick Rahimi
31
0
0
27 Jan 2025
KANs for Computer Vision: An Experimental Study
KANs for Computer Vision: An Experimental Study
Karthik Mohan
Hanxiao Wang
Xiatian Zhu
73
1
0
27 Nov 2024
Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification
Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification
Irina Barašin
Blaž Bertalanič
M. Mohorčič
Carolina Fortuna
AI4TS
94
2
0
22 Nov 2024
KAT to KANs: A Review of Kolmogorov-Arnold Networks and the Neural Leap
  Forward
KAT to KANs: A Review of Kolmogorov-Arnold Networks and the Neural Leap Forward
Divesh Basina
Joseph Raj Vishal
Aarya Choudhary
Bharatesh Chakravarthi
26
0
0
15 Nov 2024
KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
Quan Zhou
Changhua Pei
Fei Sun
Jing Han
Zhengwei Gao
Dan Pei
Haiming Zhang
Gaogang Xie
Jianhui Li
AI4TS
52
4
0
01 Nov 2024
PointNet with KAN versus PointNet with MLP for 3D Classification and
  Segmentation of Point Sets
PointNet with KAN versus PointNet with MLP for 3D Classification and Segmentation of Point Sets
Ali Kashefi
3DPC
27
6
0
14 Oct 2024
Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Ray Congrui Yu
Sherry Wu
Jiang Gui
30
1
0
07 Oct 2024
MLP-KAN: Unifying Deep Representation and Function Learning
MLP-KAN: Unifying Deep Representation and Function Learning
Yunhong He
Yifeng Xie
Zhengqing Yuan
Lichao Sun
24
1
0
03 Oct 2024
A preliminary study on continual learning in computer vision using
  Kolmogorov-Arnold Networks
A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks
Alessandro Cacciatore
Valerio Morelli
Federica Paganica
Emanuele Frontoni
Lucia Migliorelli
Daniele Berardini
CLL
26
3
0
20 Sep 2024
Kolmogorov-Arnold Transformer
Kolmogorov-Arnold Transformer
Xingyi Yang
Xinchao Wang
34
15
0
16 Sep 2024
Effective Integration of KAN for Keyword Spotting
Effective Integration of KAN for Keyword Spotting
Anfeng Xu
Biqiao Zhang
Shuyu Kong
Yiteng Huang
Zhaojun Yang
Sangeeta Srivastava
Ming Sun
29
5
0
13 Sep 2024
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
Tal Alter
Raz Lapid
Moshe Sipper
AAML
54
6
0
25 Aug 2024
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
Ziming Liu
Pingchuan Ma
Yixuan Wang
Wojciech Matusik
Max Tegmark
37
60
0
19 Aug 2024
KAN versus MLP on Irregular or Noisy Functions
KAN versus MLP on Irregular or Noisy Functions
Chen Zeng
Jiahui Wang
Haoran Shen
Qiao Wang
34
6
0
15 Aug 2024
The Energy Cost of Artificial Intelligence Lifecycle in Communication Networks
The Energy Cost of Artificial Intelligence Lifecycle in Communication Networks
Shih-Kai Chou
Jernej Hribar
William Alberto Cruz Castañeda
M. Mohorčič
Carolina Fortuna
48
1
0
01 Aug 2024
Rethinking the Function of Neurons in KANs
Rethinking the Function of Neurons in KANs
Mohammed Ghaith Altarabichi
34
6
0
30 Jul 2024
Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient
  Architecture for Nonlinear Function Approximation
Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation
SS Sidharth
Keerthana AR
R. Gokul
Anas KP
54
72
0
12 May 2024
1