ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.10007
  4. Cited By
P3P: Pseudo-3D Pre-training for Scaling 3D Masked Autoencoders

P3P: Pseudo-3D Pre-training for Scaling 3D Masked Autoencoders

19 August 2024
Xuechao Chen
Ying Chen
Jialin Li
Qiang Nie
Hanqiu Deng
Qixing Huang
Yang Li
Yang Li
    3DPC
ArXivPDFHTML

Papers citing "P3P: Pseudo-3D Pre-training for Scaling 3D Masked Autoencoders"

5 / 5 papers shown
Title
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
  Pre-training
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
Renrui Zhang
Ziyu Guo
Rongyao Fang
Bingyan Zhao
Dong Wang
Yu Qiao
Hongsheng Li
Peng Gao
3DPC
164
241
0
28 May 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
PointContrast: Unsupervised Pre-training for 3D Point Cloud
  Understanding
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining Xie
Jiatao Gu
Demi Guo
C. Qi
Leonidas J. Guibas
Or Litany
3DPC
134
618
0
21 Jul 2020
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
Iro Armeni
S. Sax
Amir Zamir
Silvio Savarese
3DV
3DPC
111
864
0
03 Feb 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
1