ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.13885
  4. Cited By
Neural Spacetimes for DAG Representation Learning
v1v2 (latest)

Neural Spacetimes for DAG Representation Learning

International Conference on Learning Representations (ICLR), 2024
25 August 2024
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael Bronstein
    CML
ArXiv (abs)PDFHTML

Papers citing "Neural Spacetimes for DAG Representation Learning"

29 / 29 papers shown
Title
Bridging Graph and State-Space Modeling for Intensive Care Unit Length of Stay Prediction
Bridging Graph and State-Space Modeling for Intensive Care Unit Length of Stay Prediction
Shuqi Zi
Haitz Sáez de Ocáriz Borde
Emma Rocheteau
Pietro Lio
Mamba
207
0
0
24 Aug 2025
Enhancing LLMs' Reasoning-Intensive Multimedia Search Capabilities through Fine-Tuning and Reinforcement Learning
Enhancing LLMs' Reasoning-Intensive Multimedia Search Capabilities through Fine-Tuning and Reinforcement Learning
Jinzheng Li
Sibo Ju
Yanzhou Su
Hongguang Li
Yiqing Shen
LRM
128
2
0
24 May 2025
Mixed-Curvature Decision Trees and Random Forests
Mixed-Curvature Decision Trees and Random Forests
Philippe Chlenski
Quentin Chu
I. Pe’er
165
2
0
07 Jun 2024
Graph Metanetworks for Processing Diverse Neural Architectures
Graph Metanetworks for Processing Diverse Neural Architectures
Derek Lim
Haggai Maron
Marc T. Law
Jonathan Lorraine
James Lucas
AI4CE
303
43
0
07 Dec 2023
AMES: A Differentiable Embedding Space Selection Framework for Latent
  Graph Inference
AMES: A Differentiable Embedding Space Selection Framework for Latent Graph Inference
Yuan Lu
Haitz Sáez de Ocáriz Borde
Pietro Lio
177
3
0
20 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent GeometriesInternational Conference on Learning Representations (ICLR), 2023
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
434
6
0
23 Oct 2023
Neural Latent Geometry Search: Product Manifold Inference via
  Gromov-Hausdorff-Informed Bayesian Optimization
Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian OptimizationNeural Information Processing Systems (NeurIPS), 2023
Haitz Sáez de Ocáriz Borde
Alvaro Arroyo
Ismael Morales
Ingmar Posner
Xiaowen Dong
334
12
0
09 Sep 2023
Capacity Bounds for Hyperbolic Neural Network Representations of Latent
  Tree Structures
Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree StructuresNeural Networks (Neural Netw.), 2023
Anastasis Kratsios
Rui Hong
Haitz Sáez de Ocáriz Borde
206
5
0
18 Aug 2023
Optimal transport and Wasserstein distances for causal models
Optimal transport and Wasserstein distances for causal modelsBernoulli (Bernoulli), 2023
Patrick Cheridito
Stephan Eckstein
OT
230
14
0
24 Mar 2023
Out-of-distributional risk bounds for neural operators with applications
  to the Helmholtz equation
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equationJournal of Computational Physics (JCP), 2023
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
303
32
0
27 Jan 2023
Latent Graph Inference using Product Manifolds
Latent Graph Inference using Product ManifoldsInternational Conference on Learning Representations (ICLR), 2022
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio
BDL
233
22
0
26 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal TransportJournal of machine learning research (JMLR), 2022
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
431
11
0
02 Nov 2022
Small Transformers Compute Universal Metric Embeddings
Small Transformers Compute Universal Metric EmbeddingsJournal of machine learning research (JMLR), 2022
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
266
14
0
14 Sep 2022
Integral Probability Metrics PAC-Bayes Bounds
Integral Probability Metrics PAC-Bayes BoundsNeural Information Processing Systems (NeurIPS), 2022
Ron Amit
Baruch Epstein
Shay Moran
Ron Meir
382
22
0
01 Jul 2022
Bayesian Structure Learning with Generative Flow Networks
Bayesian Structure Learning with Generative Flow NetworksConference on Uncertainty in Artificial Intelligence (UAI), 2022
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Damien Scieur
Stefan Bauer
Yoshua Bengio
BDL
247
181
0
28 Feb 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
195
26
0
02 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)TransformerMathematical Finance (Math. Finance), 2022
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
361
28
0
31 Jan 2022
Directed Graph Embeddings in Pseudo-Riemannian Manifolds
Directed Graph Embeddings in Pseudo-Riemannian Manifolds
Aaron Sim
Maciej Wiatrak
Angus Brayne
Páidí Creed
Saee Paliwal
149
17
0
16 Jun 2021
Graph Neural Networks with Heterophily
Graph Neural Networks with Heterophily
Jiong Zhu
Ryan A. Rossi
Anup B. Rao
Tung Mai
Nedim Lipka
Nesreen Ahmed
Danai Koutra
222
362
0
28 Sep 2020
Ultrahyperbolic Representation Learning
Ultrahyperbolic Representation Learning
M. Law
J. Stam
399
27
0
01 Jul 2020
COT-GAN: Generating Sequential Data via Causal Optimal Transport
COT-GAN: Generating Sequential Data via Causal Optimal Transport
Tianlin Xu
L. Wenliang
Michael Munn
Beatrice Acciaio
GANCML
155
121
0
15 Jun 2020
Tree! I am no Tree! I am a Low Dimensional Hyperbolic Embedding
Tree! I am no Tree! I am a Low Dimensional Hyperbolic Embedding
Rishi Sonthalia
A. Gilbert
236
57
0
08 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on GraphsNeural Information Processing Systems (NeurIPS), 2020
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
692
3,166
0
02 May 2020
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
638
986
0
28 Sep 2019
Hyperbolic Neural Networks
Hyperbolic Neural Networks
O. Ganea
Gary Bécigneul
Thomas Hofmann
219
704
0
23 May 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLaCMLOffRL
328
1,129
0
04 Mar 2018
Graph Attention Networks
Graph Attention NetworksInternational Conference on Learning Representations (ICLR), 2017
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
1.9K
23,539
0
30 Oct 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
1.7K
32,393
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral FilteringNeural Information Processing Systems (NeurIPS), 2016
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
801
8,175
0
30 Jun 2016
1