ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12274
  4. Cited By
Hierarchical LLMs In-the-loop Optimization for Real-time Multi-Robot
  Target Tracking under Unknown Hazards

Hierarchical LLMs In-the-loop Optimization for Real-time Multi-Robot Target Tracking under Unknown Hazards

18 September 2024
Yuwei Wu
Yuezhan Tao
Peihan Li
Guangyao Shi
Gaurav S. Sukhatmem
Vijay Kumar
Lifeng Zhou
ArXivPDFHTML

Papers citing "Hierarchical LLMs In-the-loop Optimization for Real-time Multi-Robot Target Tracking under Unknown Hazards"

2 / 2 papers shown
Title
Multi-agent Embodied AI: Advances and Future Directions
Multi-agent Embodied AI: Advances and Future Directions
Zhaohan Feng
Ruiqi Xue
Lei Yuan
Yang Yu
Ning Ding
M. Liu
Bingzhao Gao
Jian-jun Sun
Gang Wang
AI4CE
52
0
0
08 May 2025
Large Language Models for Multi-Robot Systems: A Survey
Large Language Models for Multi-Robot Systems: A Survey
Peihan Li
Zijian An
Shams Abrar
Lifeng Zhou
LM&Ro
LRM
54
6
0
06 Feb 2025
1