ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.18313
25
6

Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation

26 September 2024
Quanting Xie
So Yeon Min
Tianyi Zhang
Kedi Xu
Aarav Bajaj
Ruslan Salakhutdinov
Matthew Johnson-Roberson
Yonatan Bisk
Matthew Johnson-Roberson
Yonatan Bisk
    LM&Ro
ArXivPDFHTML
Abstract

There is no limit to how much a robot might explore and learn, but all of that knowledge needs to be searchable and actionable. Within language research, retrieval augmented generation (RAG) has become the workhorse of large-scale non-parametric knowledge; however, existing techniques do not directly transfer to the embodied domain, which is multimodal, where data is highly correlated, and perception requires abstraction. To address these challenges, we introduce Embodied-RAG, a framework that enhances the foundational model of an embodied agent with a non-parametric memory system capable of autonomously constructing hierarchical knowledge for both navigation and language generation. Embodied-RAG handles a full range of spatial and semantic resolutions across diverse environments and query types, whether for a specific object or a holistic description of ambiance. At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail. This hierarchical organization allows the system to efficiently generate context-sensitive outputs across different robotic platforms. We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 250 explanation and navigation queries across kilometer-level environments, highlighting its promise as a general-purpose non-parametric system for embodied agents.

View on arXiv
Comments on this paper