ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.04201
  4. Cited By
IT$^3$: Idempotent Test-Time Training
v1v2 (latest)

IT3^33: Idempotent Test-Time Training

5 October 2024
Nikita Durasov
Assaf Shocher
Doruk Öner
Gal Chechik
Alexei A. Efros
Pascal Fua
    OODVLM
ArXiv (abs)PDFHTML

Papers citing "IT$^3$: Idempotent Test-Time Training"

36 / 36 papers shown
Title
Learning from Streaming Video with Orthogonal Gradients
Learning from Streaming Video with Orthogonal Gradients
Tengda Han
Dilara Gokay
Joseph Heyward
Chuhan Zhang
Daniel Zoran
Viorica Patraucean
João Carreira
Dima Damen
Andrew Zisserman
116
0
0
02 Apr 2025
Enabling Uncertainty Estimation in Iterative Neural Networks
Enabling Uncertainty Estimation in Iterative Neural Networks
Nikita Durasov
Doruk Öner
Jonathan Donier
Hieu M. Le
Pascal Fua
UQCV
211
9
0
25 Mar 2024
Test-Time Adaptation for Depth Completion
Test-Time Adaptation for Depth Completion
Hyoungseob Park
Anjali Gupta
Alex Wong
TTAVLM
108
16
0
05 Feb 2024
Idempotent Generative Network
Idempotent Generative Network
Assaf Shocher
Amil Dravid
Yossi Gandelsman
Inbar Mosseri
Michael Rubinstein
Alexei A. Efros
101
16
0
02 Nov 2023
A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts
A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts
Jian Liang
Ran He
Tien-Ping Tan
OODVLMTTA
138
243
0
27 Mar 2023
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Huaxiu Yao
Caroline Choi
Bochuan Cao
Yoonho Lee
Pang Wei Koh
Chelsea Finn
OOD
91
79
0
25 Nov 2022
ActMAD: Activation Matching to Align Distributions for
  Test-Time-Training
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
M. Jehanzeb Mirza
Pol Jané Soneira
W. Lin
Mateusz Koziñski
Horst Possegger
Horst Bischof
VLMTTA
103
29
0
23 Nov 2022
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
Nikita Durasov
Nik Dorndorf
Pascal Fua
VLM
67
5
0
21 Nov 2022
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
Nikita Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
89
10
0
21 Nov 2022
Test-Time Training with Masked Autoencoders
Test-Time Training with Masked Autoencoders
Yossi Gandelsman
Yu Sun
Xinlei Chen
Alexei A. Efros
OOD
106
178
0
15 Sep 2022
Efficient Test-Time Model Adaptation without Forgetting
Efficient Test-Time Model Adaptation without Forgetting
Shuaicheng Niu
Jiaxiang Wu
Yifan Zhang
Yaofo Chen
S. Zheng
P. Zhao
Mingkui Tan
OODVLMTTA
98
353
0
06 Apr 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViTTPM
495
7,864
0
11 Nov 2021
MEMO: Test Time Robustness via Adaptation and Augmentation
MEMO: Test Time Robustness via Adaptation and Augmentation
Marvin Zhang
Sergey Levine
Chelsea Finn
OODTTA
164
329
0
18 Oct 2021
DEBOSH: Deep Bayesian Shape Optimization
DEBOSH: Deep Bayesian Shape Optimization
Nikita Durasov
Artem Lukoyanov
Jonathan Donier
Pascal Fua
UQCVAI4CE
105
15
0
28 Sep 2021
Masksembles for Uncertainty Estimation
Masksembles for Uncertainty Estimation
Nikita Durasov
Timur M. Bagautdinov
Pierre Baqué
Pascal Fua
OODUQCV
76
83
0
15 Dec 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
Basel Alomair
Jacob Steinhardt
Justin Gilmer
OOD
390
1,760
0
29 Jun 2020
Deep Ordinal Regression with Label Diversity
Deep Ordinal Regression with Label Diversity
Axel Berg
Magnus Oskarsson
Mark O'Connor
97
52
0
29 Jun 2020
MeshSDF: Differentiable Iso-Surface Extraction
MeshSDF: Differentiable Iso-Surface Extraction
Edoardo Remelli
Artem Lukoianov
Stephan R. Richter
Benoît Guillard
Timur M. Bagautdinov
Pierre Baqué
Pascal Fua
106
153
0
06 Jun 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OODFedMLUQCV
215
494
0
17 Feb 2020
Recurrent U-Net for Resource-Constrained Segmentation
Recurrent U-Net for Resource-Constrained Segmentation
Wei Wang
Kaicheng Yu
Joachim Hugonot
Pascal Fua
Mathieu Salzmann
3DVSSeg
71
102
0
11 Jun 2019
SinGAN: Learning a Generative Model from a Single Natural Image
SinGAN: Learning a Generative Model from a Single Natural Image
Tamar Rott Shaham
Tali Dekel
T. Michaeli
GANVLM
144
843
0
02 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
200
3,460
0
28 Mar 2019
Rank consistent ordinal regression for neural networks with application
  to age estimation
Rank consistent ordinal regression for neural networks with application to age estimation
Wenzhi Cao
Vahid Mirjalili
S. Raschka
157
215
0
20 Jan 2019
"Double-DIP": Unsupervised Image Decomposition via Coupled
  Deep-Image-Priors
"Double-DIP": Unsupervised Image Decomposition via Coupled Deep-Image-Priors
Yossi Gandelsman
Assaf Shocher
Michal Irani
91
312
0
02 Dec 2018
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OODFedMLELM
203
414
0
01 Jun 2018
RoadTracer: Automatic Extraction of Road Networks from Aerial Images
RoadTracer: Automatic Extraction of Road Networks from Aerial Images
Favyen Bastani
Songtao He
Sofiane Abbar
Mohammad Alizadeh
H. Balakrishnan
Sanjay Chawla
Samuel Madden
D. DeWitt
90
301
0
11 Feb 2018
"Zero-Shot" Super-Resolution using Deep Internal Learning
"Zero-Shot" Super-Resolution using Deep Internal Learning
Assaf Shocher
Nadav Cohen
Michal Irani
SupR
96
858
0
17 Dec 2017
Deep Layer Aggregation
Deep Layer Aggregation
Feng Yu
Dequan Wang
Evan Shelhamer
Trevor Darrell
AI4CEFAtt
163
1,334
0
20 Jul 2017
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder
Zhifei Zhang
Yang Song
Hairong Qi
GANCVBM
90
1,123
0
27 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
886
5,854
0
05 Dec 2016
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
376
7,613
0
02 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
444
1,825
0
25 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.4K
195,003
0
10 Dec 2015
ShapeNet: An Information-Rich 3D Model Repository
ShapeNet: An Information-Rich 3D Model Repository
Angel X. Chang
Thomas Funkhouser
Leonidas Guibas
Pat Hanrahan
Qi-Xing Huang
...
Shuran Song
Hao Su
Jianxiong Xiao
L. Yi
Feng Yu
3DV
178
5,540
0
09 Dec 2015
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
321
5,543
0
23 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
947
9,383
0
06 Jun 2015
1