Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.06940
Cited By
Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think
9 October 2024
Sihyun Yu
Sangkyung Kwak
Huiwon Jang
Jongheon Jeong
Jonathan Huang
Jinwoo Shin
Saining Xie
OCL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think"
4 / 4 papers shown
Title
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
X. Zhang
Jintao Guo
Shanshan Zhao
Minghao Fu
Lunhao Duan
Guo-Hua Wang
Qing-Guo Chen
Zhao Xu
Weihua Luo
Kaifu Zhang
DiffM
49
272
0
05 May 2025
X-Fusion: Introducing New Modality to Frozen Large Language Models
Sicheng Mo
Thao Nguyen
Xun Huang
Siddharth Srinivasan Iyer
Yijun Li
...
Eli Shechtman
Krishna Kumar Singh
Yong Jae Lee
Bolei Zhou
Yuheng Li
59
59
0
29 Apr 2025
Perception Encoder: The best visual embeddings are not at the output of the network
Daniel Bolya
Po-Yao (Bernie) Huang
Peize Sun
Jang Hyun Cho
Andrea Madotto
...
Shiyu Dong
Nikhila Ravi
Daniel Li
Piotr Dollár
Christoph Feichtenhofer
ObjD
VOS
81
159
0
17 Apr 2025
Movie Gen: A Cast of Media Foundation Models
Adam Polyak
Amit Zohar
Andrew Brown
Andros Tjandra
Animesh Sinha
...
Simone Parmeggiani
Steve Fine
Tara Fowler
Vladan Petrovic
Yuming Du
VGen
DiffM
43
4
0
17 Oct 2024
1