ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2411.11714
57
0

Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation

18 November 2024
Mingchao Qi
Yuanjin Li
Xing Liu
Zhengxiong Liu
Panfeng Huang
    LM&Ro
ArXivPDFHTML
Abstract

Deploying robots in open-world environments involves complex tasks characterized by long sequences and rich interactions, necessitating efficient transfer of robotic skills across diverse and complex scenarios. To address this challenge, we propose a skill library framework based on knowledge graphs, which endows robots with high-level skill awareness and spatial semantic understanding. The framework hierarchically organizes operational knowledge by constructing a "task graph" and a "scene graph" to represent task and scene semantic information, respectively. We introduce a "state graph" to facilitate interaction between high-level task planning and low-level scene information. Furthermore, we propose a hierarchical transfer framework for operational skills. At the task level, the framework integrates contextual learning and chain-of-thought prompting within a four-stage prompt paradigm, leveraging large language models' (LLMs) reasoning and generalization capabilities to achieve task-level subtask sequence transfer. At the motion level, an adaptive trajectory transfer method is developed using the A* algorithm and the skill library, enabling motion-level adaptive trajectory transfer. At the physical level, we introduce an adaptive contour extraction and posture perception method based on tactile perception. This method dynamically obtains high-precision contour and posture information from visual-tactile texture data and adjusts transferred skills, such as contact positions and postures, to ensure effectiveness in new environments. Experimental results validate the effectiveness of the proposed methods. Project website:https://github.com/MingchaoQi/skill_transfer

View on arXiv
Comments on this paper