ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.03403
  4. Cited By
BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations
v1v2 (latest)

BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations

6 January 2025
Simone Giovannini
Fabio Coppini
Andrea Gemelli
S. Marinai
    ObjD
ArXiv (abs)PDFHTMLHuggingFace (4 upvotes)

Papers citing "BoundingDocs: a Unified Dataset for Document Question Answering with Spatial Annotations"

3 / 3 papers shown
Title
BBox DocVQA: A Large Scale Bounding Box Grounded Dataset for Enhancing Reasoning in Document Visual Question Answer
BBox DocVQA: A Large Scale Bounding Box Grounded Dataset for Enhancing Reasoning in Document Visual Question Answer
Wenhan Yu
Wang Chen
Guanqiang Qi
Weikang Li
Yang Li
Lei Sha
Deguo Xia
Jizhou Huang
9
0
0
19 Nov 2025
Towards Reliable and Interpretable Document Question Answering via VLMs
Towards Reliable and Interpretable Document Question Answering via VLMs
Alessio Chen
Simone Giovannini
Andrea Gemelli
Fabio Coppini
S. Marinai
69
0
0
12 Sep 2025
DocVXQA: Context-Aware Visual Explanations for Document Question Answering
DocVXQA: Context-Aware Visual Explanations for Document Question Answering
Mohamed Ali Souibgui
Changkyu Choi
Andrey Barsky
Kangsoo Jung
Ernest Valveny
Dimosthenis Karatzas
253
1
0
12 May 2025
1