Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2502.07551
Cited By
Early Stopping Against Label Noise Without Validation Data
International Conference on Learning Representations (ICLR), 2025
11 February 2025
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Early Stopping Against Label Noise Without Validation Data"
50 / 74 papers shown
Gradient-Weight Alignment as a Train-Time Proxy for Generalization in Classification Tasks
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
142
0
0
29 Oct 2025
Early-stopping for Transformer model training
Jing He
Hua Jiang
Cheng Li
Siqian Xin
Shuzhen Yang
108
0
0
17 Oct 2025
Knowledge Integration for Physics-informed Symbolic Regression Using Pre-trained Large Language Models
Bilge Taskin
Wenxiong Xie
Teddy Lazebnik
AI4CE
166
1
0
03 Sep 2025
GradES: Significantly Faster Training in Transformers with Gradient-Based Early Stopping
Qifu Wen
Xi Zeng
Zihan Zhou
Shuaijun Liu
M. Hosseinzadeh
Ningxin Su
Reza Rawassizadeh
264
0
0
01 Sep 2025
GRADSTOP: Early Stopping of Gradient Descent via Posterior Sampling
Arash Jamshidi
Lauri Seppäläinen
Katsiaryna Haitsiukevich
Hoang Phuc Hau Luu
Anton Björklund
Kai Puolamäki
BDL
176
0
0
26 Aug 2025
LoD: Loss-difference OOD Detection by Intentionally Label-Noisifying Unlabeled Wild Data
International Joint Conference on Artificial Intelligence (IJCAI), 2025
Chuanxing Geng
Qifei Li
Xinrui Wang
Dong Liang
Songcan Chen
Pong C. Yuen
332
1
0
19 May 2025
Is Supervised Learning Really That Different from Unsupervised?
Oskar Allerbo
Thomas B. Schön
OOD
SSL
591
0
0
16 May 2025
Handling Label Noise via Instance-Level Difficulty Modeling and Dynamic Optimization
Kuan Zhang
Chengliang Chai
Jingzhe Xu
Fangqiu Yi
Ye Yuan
Guoren Wang
Lei Cao
Lei Cao
NoLa
704
1
0
01 May 2025
crowd-hpo: Realistic Hyperparameter Optimization and Benchmarking for Learning from Crowds with Noisy Labels
M. Herde
Lukas Lührs
Denis Huseljic
Bernhard Sick
367
0
0
12 Apr 2025
Robust Classification with Noisy Labels Based on Posterior Maximization
Nicola Novello
Andrea M. Tonello
NoLa
265
2
0
09 Apr 2025
Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection
IEEE Transactions on Image Processing (TIP), 2024
Zhipeng Yu
Qianqian Xu
Yangbangyan Jiang
Yingfei Sun
Qingming Huang
NoLa
336
2
0
19 Jan 2025
NoisyEQA: Benchmarking Embodied Question Answering Against Noisy Queries
Tao Wu
Chuhao Zhou
Yen Heng Wong
Lin Gu
Jianfei Yang
294
6
0
14 Dec 2024
Noisy Ostracods: A Fine-Grained, Imbalanced Real-World Dataset for Benchmarking Robust Machine Learning and Label Correction Methods
Neural Information Processing Systems (NeurIPS), 2024
Jiamian Hu
Yuanyuan Hong
Yihua Chen
He Wang
Moriaki Yasuhara
332
2
0
03 Dec 2024
dopanim: A Dataset of Doppelganger Animals with Noisy Annotations from Multiple Humans
M. Herde
Denis Huseljic
Lukas Rauch
Bernhard Sick
300
3
0
30 Jul 2024
Annot-Mix: Learning with Noisy Class Labels from Multiple Annotators via a Mixup Extension
European Conference on Artificial Intelligence (ECAI), 2024
M. Herde
Lukas Lührs
Denis Huseljic
Bernhard Sick
346
3
0
06 May 2024
A Layer Selection Approach to Test Time Adaptation
AAAI Conference on Artificial Intelligence (AAAI), 2024
Sabyasachi Sahoo
Mostafa ElAraby
Jonas Ngnawé
Y. Pequignot
Frédéric Precioso
Christian Gagné
239
0
0
04 Apr 2024
Mitigating Label Noise on Graph via Topological Sample Selection
Yuhao Wu
Jiangchao Yao
Xiaobo Xia
Jun-chen Yu
Ruxing Wang
Bo Han
Tongliang Liu
NoLa
305
6
0
04 Mar 2024
Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning
Zhuo Huang
Chang Liu
Yinpeng Dong
Hang Su
Shibao Zheng
Tongliang Liu
VLM
MLLM
208
18
0
05 Dec 2023
Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models
Zhaowei Zhu
Jialu Wang
Hao Cheng
Yang Liu
267
26
0
19 Nov 2023
On the Over-Memorization During Natural, Robust and Catastrophic Overfitting
International Conference on Learning Representations (ICLR), 2023
Runqi Lin
Chaojian Yu
Bo Han
Tongliang Liu
240
17
0
13 Oct 2023
Regularly Truncated M-estimators for Learning with Noisy Labels
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Xiaobo Xia
Pengqian Lu
Chen Gong
Bo Han
Jun-chen Yu
Jun Yu
Tongliang Liu
NoLa
197
15
0
02 Sep 2023
Late Stopping: Avoiding Confidently Learning from Mislabeled Examples
IEEE International Conference on Computer Vision (ICCV), 2023
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
268
17
0
26 Aug 2023
Improve Noise Tolerance of Robust Loss via Noise-Awareness
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2023
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
264
8
0
18 Jan 2023
Progress measures for grokking via mechanistic interpretability
International Conference on Learning Representations (ICLR), 2023
Neel Nanda
Lawrence Chan
Tom Lieberum
Jess Smith
Jacob Steinhardt
501
626
0
12 Jan 2023
Leveraging Unlabeled Data to Track Memorization
International Conference on Learning Representations (ICLR), 2022
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
207
4
0
08 Dec 2022
Characterizing Datapoints via Second-Split Forgetting
Neural Information Processing Systems (NeurIPS), 2022
Pratyush Maini
Saurabh Garg
Zachary Chase Lipton
J. Zico Kolter
229
38
0
26 Oct 2022
Self-Filtering: A Noise-Aware Sample Selection for Label Noise with Confidence Penalization
European Conference on Computer Vision (ECCV), 2022
Qinglai Wei
Haoliang Sun
Xiankai Lu
Yilong Yin
NoLa
185
55
0
24 Aug 2022
Towards Understanding Grokking: An Effective Theory of Representation Learning
Neural Information Processing Systems (NeurIPS), 2022
Ziming Liu
O. Kitouni
Niklas Nolte
Eric J. Michaud
Max Tegmark
Mike Williams
AI4CE
322
206
0
20 May 2022
SELC: Self-Ensemble Label Correction Improves Learning with Noisy Labels
International Joint Conference on Artificial Intelligence (IJCAI), 2022
Yangdi Lu
Wenbo He
NoLa
236
46
0
02 May 2022
Robust Training under Label Noise by Over-parameterization
International Conference on Machine Learning (ICML), 2022
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
256
138
0
28 Feb 2022
Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Alethea Power
Yuri Burda
Harrison Edwards
Igor Babuschkin
Vedant Misra
354
487
0
06 Jan 2022
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
International Conference on Learning Representations (ICLR), 2021
Jiaheng Wei
Zhaowei Zhu
Weiran Wang
Tongliang Liu
Gang Niu
Yang Liu
NoLa
369
309
0
22 Oct 2021
Understanding and Improving Early Stopping for Learning with Noisy Labels
Neural Information Processing Systems (NeurIPS), 2021
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
214
266
0
30 Jun 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
International Conference on Machine Learning (ICML), 2021
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
626
99
0
08 Jun 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
International Conference on Machine Learning (ICML), 2021
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
237
30
0
01 May 2021
Robust Learning by Self-Transition for Handling Noisy Labels
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
276
44
0
08 Dec 2020
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
292
37
0
08 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
357
180
0
09 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Neural Information Processing Systems (NeurIPS), 2020
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
201
25
0
27 Oct 2020
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
International Conference on Learning Representations (ICLR), 2020
Hao Cheng
Zhaowei Zhu
Xingyu Li
Yifei Gong
Xing Sun
Yang Liu
NoLa
269
236
0
05 Oct 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Neural Information Processing Systems (NeurIPS), 2020
Vitaly Feldman
Chiyuan Zhang
TDI
537
564
0
09 Aug 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
1.1K
1,203
0
16 Jul 2020
Are Labels Always Necessary for Classifier Accuracy Evaluation?
Weijian Deng
Liang Zheng
324
131
0
06 Jul 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
458
673
0
30 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
359
41
0
08 Jun 2020
Computing the Testing Error without a Testing Set
Computer Vision and Pattern Recognition (CVPR), 2020
C. Corneanu
Meysam Madadi
Sergio Escalera
Aleix M. Martinez
AAML
223
76
0
01 May 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
International Conference on Learning Representations (ICLR), 2019
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
382
1,052
0
04 Dec 2019
Fantastic Generalization Measures and Where to Find Them
International Conference on Learning Representations (ICLR), 2019
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
432
667
0
04 Dec 2019
How does Early Stopping Help Generalization against Label Noise?
Hwanjun Song
Minseok Kim
Dongmin Park
Jae-Gil Lee
NoLa
423
82
0
19 Nov 2019
Benign Overfitting in Linear Regression
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
413
857
0
26 Jun 2019
1
2
Next