ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.23775
  4. Cited By
Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies

Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies

31 March 2025
Lucas Heublein
N. Raichur
Tobias Feigl
Tobias Brieger
Fin Heuer
Lennart Asbach
A. Rügamer
Felix Ott
ArXivPDFHTML

Papers citing "Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies"

5 / 5 papers shown
Title
VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification
Lucas Heublein
Simon Kocher
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
DRL
21
1
0
14 Apr 2025
Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification
Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification
Nishant S. Gaikwad
Lucas Heublein
N. Raichur
Tobias Feigl
Christopher Mutschler
Felix Ott
40
5
0
31 Dec 2024
Achieving Generalization in Orchestrating GNSS Interference Monitoring
  Stations Through Pseudo-Labeling
Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling
Lucas Heublein
Tobias Feigl
A. Rügamer
Felix Ott
32
3
0
03 Oct 2024
Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization
Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization
Lucas Heublein
Tobias Feigl
Thorsten Nowak
A. Rügamer
Christopher Mutschler
Felix Ott
23
6
0
23 Sep 2024
Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
N. Raichur
Lucas Heublein
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
CLL
BDL
53
7
0
17 May 2024
1