ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.15987
  4. Cited By
Towards Identifiability of Interventional Stochastic Differential Equations
v1v2 (latest)

Towards Identifiability of Interventional Stochastic Differential Equations

21 May 2025
Aaron Zweig
Zaikang Lin
Elham Azizi
David A. Knowles
ArXiv (abs)PDFHTML

Papers citing "Towards Identifiability of Interventional Stochastic Differential Equations"

24 / 24 papers shown
Title
Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Zaikang Lin
Sei Chang
Aaron Zweig
Elham Azizi
David A. Knowles
David A. Knowles
134
1
0
05 Jan 2025
Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
Vincent Guan
Joseph Janssen
Hossein Rahmani
Andrew Warren
Stephen X. Zhang
Elina Robeva
Geoffrey Schiebinger
DiffM
138
7
0
30 Oct 2024
Causal Modeling with Stationary Diffusions
Causal Modeling with Stationary Diffusions
Lars Lorch
Andreas Krause
Bernhard Schölkopf
DiffM
139
13
0
26 Oct 2023
Identifiability Guarantees for Causal Disentanglement from Soft
  Interventions
Identifiability Guarantees for Causal Disentanglement from Soft Interventions
Jiaqi Zhang
C. Squires
Kristjan Greenewald
Akash Srivastava
Karthikeyan Shanmugam
Caroline Uhler
CML
129
65
0
12 Jul 2023
Learning Linear Causal Representations from Interventions under General
  Nonlinear Mixing
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
110
65
0
04 Jun 2023
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
  GFlowNets
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets
Lazar Atanackovic
Alexander Tong
Bo Wang
Leo J. Lee
Yoshua Bengio
Jason S. Hartford
BDL
103
25
0
08 Feb 2023
Linear Causal Disentanglement via Interventions
Linear Causal Disentanglement via Interventions
C. Squires
A. Seigal
Salil Bhate
Caroline Uhler
CML
130
68
0
29 Nov 2022
Active Learning for Optimal Intervention Design in Causal Models
Active Learning for Optimal Intervention Design in Causal Models
Jiaqi Zhang
Louis V. Cammarata
C. Squires
T. Sapsis
Caroline Uhler
CML
109
28
0
10 Sep 2022
Identifiability in Continuous Lyapunov Models
Identifiability in Continuous Lyapunov Models
Philipp Dettling
R. Homs
Carlos Améndola
Mathias Drton
N. Hansen
81
9
0
08 Sep 2022
Disentanglement via Mechanism Sparsity Regularization: A New Principle
  for Nonlinear ICA
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CMLOOD
104
141
0
21 Jul 2021
Neural SDEs as Infinite-Dimensional GANs
Neural SDEs as Infinite-Dimensional GANs
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
DiffM
66
154
0
06 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
222
676
0
22 Jan 2021
Differentiable Causal Discovery from Interventional Data
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
99
191
0
03 Jul 2020
On Low Rank Directed Acyclic Graphs and Causal Structure Learning
On Low Rank Directed Acyclic Graphs and Causal Structure Learning
Zhuangyan Fang
Shengyu Zhu
Jiji Zhang
Yue Liu
Zhitang Chen
Yangbo He
CML
89
28
0
10 Jun 2020
Scaling structural learning with NO-BEARS to infer causal transcriptome
  networks
Scaling structural learning with NO-BEARS to infer causal transcriptome networks
Hao-Chih Lee
M. Danieletto
Riccardo Miotto
S. Cherng
J. Dudley
CML
82
47
0
31 Oct 2019
Learning Activation Functions: A new paradigm for understanding Neural
  Networks
Learning Activation Functions: A new paradigm for understanding Neural Networks
Mohit Goyal
R. Goyal
Brejesh Lall
72
66
0
23 Jun 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
80
93
0
19 Jun 2019
A simple and efficient architecture for trainable activation functions
A simple and efficient architecture for trainable activation functions
Andrea Apicella
Francesco Isgrò
R. Prevete
56
37
0
08 Feb 2019
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
100
533
0
18 Oct 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLaCMLOffRL
111
952
0
04 Mar 2018
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDLSyDa
124
490
0
15 Jun 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
227
4,303
0
04 Jun 2013
Identifiability of Gaussian structural equation models with equal error
  variances
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
211
339
0
11 May 2012
Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and
  Ellipsoid Fitting
Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting
J. Saunderson
V. Chandrasekaran
P. Parrilo
A. Willsky
100
79
0
05 Apr 2012
1