Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.16516
Cited By
Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
22 May 2025
Majid Mohammadi
Siu Lun Chau
Krikamol Muandet
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods"
26 / 26 papers shown
Title
A Unified View of Optimal Kernel Hypothesis Testing
Antonin Schrab
62
3
0
10 Mar 2025
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
J. Herbinger
FAtt
111
2
0
22 Dec 2024
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
84
4
0
30 Oct 2024
shapiq: Shapley Interactions for Machine Learning
Maximilian Muschalik
Hubert Baniecki
Fabian Fumagalli
Patrick Kolpaczki
Barbara Hammer
Eyke Hüllermeier
TDI
46
13
0
02 Oct 2024
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
75
14
0
24 May 2023
Explanations of Black-Box Models based on Directional Feature Interactions
A. Masoomi
Davin Hill
Zhonghui Xu
C. Hersh
E. Silverman
P. Castaldi
Stratis Ioannidis
Jennifer Dy
FAtt
64
19
0
16 Apr 2023
From Shapley Values to Generalized Additive Models and back
Sebastian Bordt
U. V. Luxburg
FAtt
TDI
108
40
0
08 Sep 2022
Unifying local and global model explanations by functional decomposition of low dimensional structures
M. Hiabu
Josephine T. Meyer
Marvin N. Wright
FAtt
48
20
0
12 Aug 2022
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
38
20
0
18 Oct 2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
CML
35
20
0
07 Jun 2021
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
39
166
0
02 Dec 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
97
151
0
03 Nov 2020
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDI
FAtt
64
362
0
25 Feb 2020
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models
Benjamin J. Lengerich
S. Tan
C. Chang
Giles Hooker
R. Caruana
39
40
0
12 Nov 2019
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
35
279
0
29 Oct 2019
The many Shapley values for model explanation
Mukund Sundararajan
A. Najmi
TDI
FAtt
40
628
0
22 Aug 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
300
5,664
0
25 Jul 2019
Causal Inference via Kernel Deviance Measures
Jovana Mitrović
Dino Sejdinovic
Yee Whye Teh
CML
15
62
0
12 Apr 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
42
72
0
24 Feb 2018
Characteristic and Universal Tensor Product Kernels
Z. Szabó
Bharath K. Sriperumbudur
103
72
0
28 Aug 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
446
21,459
0
22 May 2017
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
66
730
0
31 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
94
478
0
10 Feb 2016
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
159
327
0
09 Feb 2016
Variance components and generalized Sobol' indices
Art B. Owen
71
111
0
08 May 2012
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
83
329
0
19 Dec 2011
1