ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16516
  4. Cited By
Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods

Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods

22 May 2025
Majid Mohammadi
Siu Lun Chau
Krikamol Muandet
    FAtt
ArXivPDFHTML

Papers citing "Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods"

26 / 26 papers shown
Title
A Unified View of Optimal Kernel Hypothesis Testing
Antonin Schrab
62
3
0
10 Mar 2025
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
J. Herbinger
FAtt
111
2
0
22 Dec 2024
An Overview of Causal Inference using Kernel Embeddings
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
84
4
0
30 Oct 2024
shapiq: Shapley Interactions for Machine Learning
shapiq: Shapley Interactions for Machine Learning
Maximilian Muschalik
Hubert Baniecki
Fabian Fumagalli
Patrick Kolpaczki
Barbara Hammer
Eyke Hüllermeier
TDI
46
13
0
02 Oct 2024
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
  Models
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
75
14
0
24 May 2023
Explanations of Black-Box Models based on Directional Feature
  Interactions
Explanations of Black-Box Models based on Directional Feature Interactions
A. Masoomi
Davin Hill
Zhonghui Xu
C. Hersh
E. Silverman
P. Castaldi
Stratis Ioannidis
Jennifer Dy
FAtt
64
19
0
16 Apr 2023
From Shapley Values to Generalized Additive Models and back
From Shapley Values to Generalized Additive Models and back
Sebastian Bordt
U. V. Luxburg
FAtt
TDI
108
40
0
08 Sep 2022
Unifying local and global model explanations by functional decomposition
  of low dimensional structures
Unifying local and global model explanations by functional decomposition of low dimensional structures
M. Hiabu
Josephine T. Meyer
Marvin N. Wright
FAtt
48
20
0
12 Aug 2022
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
38
20
0
18 Oct 2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
CML
35
20
0
07 Jun 2021
Improving KernelSHAP: Practical Shapley Value Estimation via Linear
  Regression
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
39
166
0
02 Dec 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
  Predictions of Complex Models
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
97
151
0
03 Nov 2020
Problems with Shapley-value-based explanations as feature importance
  measures
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDI
FAtt
64
362
0
25 Feb 2020
Purifying Interaction Effects with the Functional ANOVA: An Efficient
  Algorithm for Recovering Identifiable Additive Models
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models
Benjamin J. Lengerich
S. Tan
C. Chang
Giles Hooker
R. Caruana
39
40
0
12 Nov 2019
Feature relevance quantification in explainable AI: A causal problem
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
35
279
0
29 Oct 2019
The many Shapley values for model explanation
The many Shapley values for model explanation
Mukund Sundararajan
A. Najmi
TDI
FAtt
40
628
0
22 Aug 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
300
5,664
0
25 Jul 2019
Causal Inference via Kernel Deviance Measures
Causal Inference via Kernel Deviance Measures
Jovana Mitrović
Dino Sejdinovic
Yee Whye Teh
CML
15
62
0
12 Apr 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
42
72
0
24 Feb 2018
Characteristic and Universal Tensor Product Kernels
Characteristic and Universal Tensor Product Kernels
Z. Szabó
Bharath K. Sriperumbudur
103
72
0
28 Aug 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
446
21,459
0
22 May 2017
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
66
730
0
31 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
94
478
0
10 Feb 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
159
327
0
09 Feb 2016
Variance components and generalized Sobol' indices
Variance components and generalized Sobol' indices
Art B. Owen
71
111
0
08 May 2012
Additive Gaussian Processes
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
83
329
0
19 Dec 2011
1