Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.16620
Cited By
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
22 May 2025
Benjamin Herdeanu
Juan Nathaniel
Carla Roesch
Jatan Buch
Gregor Ramien
Johannes Haux
Pierre Gentine
CML
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models"
36 / 36 papers shown
Title
Deep Koopman operator framework for causal discovery in nonlinear dynamical systems
Juan Nathaniel
Carla Roesch
Jatan Buch
Derek DeSantis
Adam Rupe
Kara Lamb
Pierre Gentine
CML
62
1
0
20 May 2025
Generative emulation of chaotic dynamics with coherent prior
Juan Nathaniel
Pierre Gentine
AI4TS
AI4CE
62
3
0
19 Apr 2025
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
146
1
0
21 Mar 2025
CausalRivers -- Scaling up benchmarking of causal discovery for real-world time-series
Gideon Stein
M. Shadaydeh
Jan Blunk
Niklas Penzel
Joachim Denzler
AI4TS
78
1
0
21 Mar 2025
The Landscape of Causal Discovery Data: Grounding Causal Discovery in Real-World Applications
P. Brouillard
Chandler Squires
Jonas Wahl
Konrad P. Kording
Karen Sachs
Alexandre Drouin
Dhanya Sridhar
CML
134
3
0
02 Dec 2024
Tangent Space Causal Inference: Leveraging Vector Fields for Causal Discovery in Dynamical Systems
Kurt Butler
Daniel Waxman
Petar M. Djurić
CML
63
2
0
30 Oct 2024
Standardizing Structural Causal Models
Weronika Ormaniec
Scott Sussex
Lars Lorch
Bernhard Schölkopf
Andreas Krause
CML
143
7
0
17 Jun 2024
Dynamic Structural Causal Models
Philip A. Boeken
Joris M. Mooij
112
4
0
03 Jun 2024
ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction
Juan Nathaniel
Yongquan Qu
Tung Nguyen
Sungduk Yu
Julius J. M. Busecke
Aditya Grover
Pierre Gentine
AI4Cl
AI4TS
124
18
0
01 Feb 2024
Neural General Circulation Models for Weather and Climate
Dmitrii Kochkov
J. Yuval
I. Langmore
Peter C. Norgaard
Jamie A. Smith
...
Peter W. Battaglia
Alvaro Sanchez-Gonzalez
Matthew Willson
Michael P. Brenner
Stephan Hoyer
AI4Cl
AI4CE
131
169
0
13 Nov 2023
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
91
17
0
03 Oct 2023
causalAssembly
\texttt{causalAssembly}
causalAssembly
: Generating Realistic Production Data for Benchmarking Causal Discovery
Konstantin Göbler
Tobias Windisch
Mathias Drton
T. Pychynski
Steffen Sonntag
Martin Roth
CML
183
13
0
19 Jun 2023
CUTS+: High-dimensional Causal Discovery from Irregular Time-series
Yuxiao Cheng
Lianglong Li
Tingxiong Xiao
Zongren Li
Qionghai Dai
J. Suo
K. He
CML
BDL
AI4TS
94
26
0
10 May 2023
A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive Noise Models
Alexander G. Reisach
Myriam Tami
C. Seiler
Antoine Chambaz
S. Weichwald
CML
101
21
0
31 Mar 2023
Model scale versus domain knowledge in statistical forecasting of chaotic systems
W. Gilpin
AI4TS
99
23
0
13 Mar 2023
Enhancing Causal Discovery from Robot Sensor Data in Dynamic Scenarios
Luca Castri
Sariah Mghames
Marc Hanheide
Nicola Bellotto
CML
75
13
0
20 Feb 2023
CUTS: Neural Causal Discovery from Irregular Time-Series Data
Yuxiao Cheng
Runzhao Yang
Tingxiong Xiao
Zongren Li
J. Suo
K. He
Qionghai Dai
OOD
BDL
AI4TS
CML
73
28
0
15 Feb 2023
Causal discovery for time series with latent confounders
Christian Reiser
BDL
CML
AI4TS
37
4
0
07 Sep 2022
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
Noah Hollmann
Samuel G. Müller
Katharina Eggensperger
Frank Hutter
119
317
0
05 Jul 2022
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson
P. Manshausen
A. Douglas
D. Watson‐Parris
Y. Gal
P. Stier
AI4Cl
129
7
0
28 Oct 2021
Chaos as an interpretable benchmark for forecasting and data-driven modelling
W. Gilpin
AI4TS
65
82
0
11 Oct 2021
Neural graphical modelling in continuous-time: consistency guarantees and algorithms
Alexis Bellot
K. Branson
M. Schaar
CML
AI4TS
91
46
0
06 May 2021
Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data
A. Lawrence
Marcus Kaiser
Rui Sampaio
Maksim Sipos
CML
AI4TS
109
20
0
16 Apr 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
82
142
0
26 Feb 2021
High-recall causal discovery for autocorrelated time series with latent confounders
Andreas Gerhardus
J. Runge
CML
AI4TS
96
102
0
03 Jul 2020
Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets
Jakob Runge
93
195
0
07 Mar 2020
DYNOTEARS: Structure Learning from Time-Series Data
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CML
AI4TS
BDL
109
192
0
02 Feb 2020
Economy Statistical Recurrent Units For Inferring Nonlinear Granger Causality
Saurabh Khanna
Vincent Y. F. Tan
AI4TS
71
72
0
22 Nov 2019
Causal Modeling of Dynamical Systems
Stephan Bongers
Tineke Blom
Joris M. Mooij
73
24
0
23 Mar 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
109
951
0
04 Mar 2018
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
Md. Zahangir Alom
T. Taha
C. Yakopcic
Stefan Westberg
P. Sidike
Mst Shamima Nasrin
B. Van Essen
A. Awwal
V. Asari
VLM
133
882
0
03 Mar 2018
Remote Sensing Image Scene Classification: Benchmark and State of the Art
Gong Cheng
Junwei Han
Xiaoqiang Lu
108
2,272
0
01 Mar 2017
From Deterministic ODEs to Dynamic Structural Causal Models
Paul Kishan Rubenstein
Stephan Bongers
Bernhard Schölkopf
Joris M. Mooij
86
55
0
29 Aug 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.4K
195,003
0
10 Dec 2015
From Ordinary Differential Equations to Structural Causal Models: the deterministic case
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
126
105
0
09 Aug 2014
Structural Intervention Distance (SID) for Evaluating Causal Graphs
J. Peters
Peter Buhlmann
CML
104
40
0
05 Jun 2013
1