Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.17765
Cited By
Joker: Joint Optimization Framework for Lightweight Kernel Machines
23 May 2025
Junhong Zhang
Zhihui Lai
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Joker: Joint Optimization Framework for Lightweight Kernel Machines"
20 / 20 papers shown
Title
Fast training of large kernel models with delayed projections
Amirhesam Abedsoltan
Siyuan Ma
Parthe Pandit
Mikhail Belkin
92
1
0
25 Nov 2024
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
34
9
0
31 Oct 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
52
14
0
26 May 2023
Toward Large Kernel Models
Amirhesam Abedsoltan
M. Belkin
Parthe Pandit
71
17
0
06 Feb 2023
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
112
94
0
22 Sep 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
99
93
0
03 Jul 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
61
115
0
18 Jun 2020
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
45
36
0
03 Jul 2019
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
43
81
0
31 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
77
1,088
0
28 Sep 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
206
3,160
0
20 Jun 2018
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
44
196
0
31 May 2017
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
53
78
0
30 Mar 2017
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
63
662
0
27 Oct 2016
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
38
42
0
17 Feb 2016
Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection
J. Nutini
Mark Schmidt
I. Laradji
M. Friedlander
H. Koepke
66
222
0
01 Jun 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
72
99
0
08 Feb 2015
Scalable Kernel Methods via Doubly Stochastic Gradients
Bo Dai
Bo Xie
Niao He
Yingyu Liang
Anant Raj
Maria-Florina Balcan
Le Song
109
230
0
21 Jul 2014
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
121
1,031
0
10 Sep 2012
Iteration Complexity of Randomized Block-Coordinate Descent Methods for Minimizing a Composite Function
Peter Richtárik
Martin Takáč
86
769
0
14 Jul 2011
1