ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.19646
  4. Cited By
Energy-based generator matching: A neural sampler for general state space
v1v2v3 (latest)

Energy-based generator matching: A neural sampler for general state space

26 May 2025
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
ArXiv (abs)PDFHTML

Papers citing "Energy-based generator matching: A neural sampler for general state space"

26 / 26 papers shown
Target Concrete Score Matching: A Holistic Framework for Discrete Diffusion
Target Concrete Score Matching: A Holistic Framework for Discrete Diffusion
Ruixiang Zhang
Shuangfei Zhai
Yizhe Zhang
James Thornton
Zijing Ou
Joshua M. Susskind
Navdeep Jaitly
DiffM
271
18
0
23 Apr 2025
LEAPS: A discrete neural sampler via locally equivariant networks
LEAPS: A discrete neural sampler via locally equivariant networks
Peter Holderrieth
Michael S. Albergo
Tommi Jaakkola
162
6
0
15 Feb 2025
Neural Flow Samplers with Shortcut Models
Neural Flow Samplers with Shortcut Models
Wuhao Chen
Chinmay Pani
Yingzhen Li
614
3
0
11 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
411
15
0
10 Jan 2025
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
489
46
0
03 Oct 2024
Iterated Energy-based Flow Matching for Sampling from Boltzmann
  Densities
Iterated Energy-based Flow Matching for Sampling from Boltzmann Densities
Dongyeop Woo
SungSoo Ahn
214
11
0
29 Aug 2024
Discrete Flow Matching
Discrete Flow Matching
Itai Gat
Tal Remez
Neta Shaul
Felix Kreuk
Ricky T. Q. Chen
Gabriel Synnaeve
Yossi Adi
Y. Lipman
DiffM
321
180
0
22 Jul 2024
Liouville Flow Importance Sampler
Liouville Flow Importance SamplerInternational Conference on Machine Learning (ICML), 2024
Yifeng Tian
Nishant Panda
Yen Ting Lin
307
18
0
03 May 2024
Target Score Matching
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
346
34
0
13 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
279
91
0
09 Feb 2024
Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows
  with Applications to Protein Co-Design
Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design
Andrew Campbell
Jason Yim
Regina Barzilay
Tom Rainforth
Tommi Jaakkola
AI4CE
354
218
0
07 Feb 2024
Delta-AI: Local objectives for amortized inference in sparse graphical
  models
Delta-AI: Local objectives for amortized inference in sparse graphical modelsInternational Conference on Learning Representations (ICLR), 2023
Jean-Pierre Falet
Hae Beom Lee
Nikolay Malkin
Chen Sun
Dragos Secrieru
Thomas Jiralerspong
Dinghuai Zhang
Guillaume Lajoie
Yoshua Bengio
333
8
0
03 Oct 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusionsInternational Conference on Learning Representations (ICLR), 2023
Lorenz Richter
Julius Berner
DiffM
398
87
0
03 Jul 2023
Denoising Diffusion Samplers
Denoising Diffusion SamplersInternational Conference on Learning Representations (ICLR), 2023
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
317
122
0
27 Feb 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networksInternational Conference on Machine Learning (ICML), 2023
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
353
111
0
30 Jan 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
451
39
0
18 Jan 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
460
131
0
02 Nov 2022
Flow Matching for Generative Modeling
Flow Matching for Generative ModelingInternational Conference on Learning Representations (ICLR), 2022
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
1.2K
2,970
0
06 Oct 2022
Diffusion-LM Improves Controllable Text Generation
Diffusion-LM Improves Controllable Text GenerationNeural Information Processing Systems (NeurIPS), 2022
Xiang Lisa Li
John Thickstun
Ishaan Gulrajani
Abigail Z. Jacobs
Tatsunori B. Hashimoto
AI4CE
514
1,115
0
27 May 2022
Trajectory balance: Improved credit assignment in GFlowNets
Trajectory balance: Improved credit assignment in GFlowNetsNeural Information Processing Systems (NeurIPS), 2022
Nikolay Malkin
Moksh Jain
Emmanuel Bengio
Chen Sun
Yoshua Bengio
523
237
0
31 Jan 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion ModelsComputer Vision and Pattern Recognition (CVPR), 2021
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
DiffM
3.1K
21,434
0
20 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
340
159
0
30 Nov 2021
GFlowNet Foundations
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
405
294
0
17 Nov 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate GenerationNeural Information Processing Systems (NeurIPS), 2021
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
353
435
0
08 Jun 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential EquationsInternational Conference on Learning Representations (ICLR), 2020
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
2.2K
8,952
0
26 Nov 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
DiffWave: A Versatile Diffusion Model for Audio SynthesisInternational Conference on Learning Representations (ICLR), 2020
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffMBDL
710
1,779
0
21 Sep 2020
1
Page 1 of 1