ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0812.4905
  4. Cited By
Kronecker Graphs: An Approach to Modeling Networks

Kronecker Graphs: An Approach to Modeling Networks

29 December 2008
J. Leskovec
Deepayan Chakrabarti
Jon M. Kleinberg
Christos Faloutsos
Zoubin Ghahramani
ArXivPDFHTML

Papers citing "Kronecker Graphs: An Approach to Modeling Networks"

50 / 194 papers shown
Title
Inference for Network Structure and Dynamics from Time Series Data via
  Graph Neural Network
Inference for Network Structure and Dynamics from Time Series Data via Graph Neural Network
Mengyuan Chen
Jiang Zhang
Zhang Zhang
Lun Du
Qiao Hu
Shuo Wang
Jiaqi Zhu
AI4CE
6
7
0
18 Jan 2020
Understanding the Limitations of Network Online Learning
Understanding the Limitations of Network Online Learning
Timothy LaRock
Timothy Sakharov
Sahely Bhadra
Tina Eliassi-Rad
6
5
0
09 Jan 2020
A Parallel Sparse Tensor Benchmark Suite on CPUs and GPUs
A Parallel Sparse Tensor Benchmark Suite on CPUs and GPUs
Jiajia Li
M. Lakshminarasimhan
Xiaolong Wu
Ang Li
C. Olschanowsky
Kevin J. Barker
8
3
0
02 Jan 2020
KoPA: Automated Kronecker Product Approximation
KoPA: Automated Kronecker Product Approximation
Chencheng Cai
Rong Chen
Han Xiao
8
12
0
05 Dec 2019
Disentangling Interpretable Generative Parameters of Random and
  Real-World Graphs
Disentangling Interpretable Generative Parameters of Random and Real-World Graphs
Niklas Stoehr
Emine Yilmaz
Marc Brockschmidt
Jan Stuehmer
BDL
CML
DRL
11
14
0
12 Oct 2019
Efficient Graph Generation with Graph Recurrent Attention Networks
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao
Yujia Li
Yang Song
Shenlong Wang
C. Nash
William L. Hamilton
D. Duvenaud
R. Urtasun
R. Zemel
GNN
12
325
0
02 Oct 2019
Deep Generative Model for Sparse Graphs using Text-Based Learning with
  Augmentation in Generative Examination Networks
Deep Generative Model for Sparse Graphs using Text-Based Learning with Augmentation in Generative Examination Networks
R. V. Deursen
Guillaume Godin
6
1
0
24 Sep 2019
Further results on structured regression for multi-scale networks
Further results on structured regression for multi-scale networks
Milan Basic
Branko Arsić
Z. Obradovic
BDL
13
0
0
02 Sep 2019
Benchmarks for Graph Embedding Evaluation
Benchmarks for Graph Embedding Evaluation
Palash Goyal
Di Huang
Ankita Goswami
Sujit Rokka Chhetri
A. Canedo
Emilio Ferrara
9
15
0
19 Aug 2019
Distributed Edge Partitioning for Trillion-edge Graphs
Distributed Edge Partitioning for Trillion-edge Graphs
Masatoshi Hanai
Toyotaro Suzumura
Wen Jun Tan
Elvis S. Liu
Georgios Theodoropoulos
Wentong Cai
4
53
0
16 Aug 2019
Automatic Discovery of Families of Network Generative Processes
Automatic Discovery of Families of Network Generative Processes
Telmo Menezes
Camille Roth
11
2
0
26 Jun 2019
Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting
  Critical Structures
Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting Critical Structures
Ruo-Chun Tzeng
Shan-Hung Wu
GNN
6
13
0
23 Jun 2019
Popularity Prediction on Social Platforms with Coupled Graph Neural
  Networks
Popularity Prediction on Social Platforms with Coupled Graph Neural Networks
Qi Cao
Huawei Shen
Jinhua Gao
Bingzheng Wei
Xueqi Cheng
GNN
6
130
0
21 Jun 2019
Scalable Generative Models for Graphs with Graph Attention Mechanism
Scalable Generative Models for Graphs with Graph Attention Mechanism
Wataru Kawai
Yusuke Mukuta
Tatsuya Harada
GNN
6
17
0
05 Jun 2019
Linear Work Generation of R-MAT Graphs
Linear Work Generation of R-MAT Graphs
Lorenz Hübschle-Schneider
Peter Sanders
23
12
0
09 May 2019
Single Machine Graph Analytics on Massive Datasets Using Intel Optane DC
  Persistent Memory
Single Machine Graph Analytics on Massive Datasets Using Intel Optane DC Persistent Memory
G. Gill
Roshan Dathathri
Loc Hoang
R. Peri
K. Pingali
GNN
17
79
0
15 Apr 2019
Scaling Up Collaborative Filtering Data Sets through Randomized Fractal
  Expansions
Scaling Up Collaborative Filtering Data Sets through Randomized Fractal Expansions
Francois Belletti
K. Lakshmanan
Walid Krichene
Nicolas Mayoraz
Yi-Fan Chen
John R. Anderson
Taylor Robie
Tayo Oguntebi
Dan Shirron
Amit Bleiwess
23
5
0
08 Apr 2019
More Parallelism in Dijkstra's Single-Source Shortest Path Algorithm
More Parallelism in Dijkstra's Single-Source Shortest Path Algorithm
Michael Kainer
J. L. Traff
8
6
0
28 Mar 2019
Learning Discrete Structures for Graph Neural Networks
Learning Discrete Structures for Graph Neural Networks
Luca Franceschi
Mathias Niepert
Massimiliano Pontil
X. He
GNN
11
407
0
28 Mar 2019
Bayesian Model Selection with Graph Structured Sparsity
Bayesian Model Selection with Graph Structured Sparsity
Youngseok Kim
Chao Gao
10
7
0
08 Feb 2019
Heterogeneous Network Motifs
Heterogeneous Network Motifs
Ryan A. Rossi
Nesreen Ahmed
Aldo G. Carranza
David Arbour
Anup B. Rao
Sungchul Kim
Eunyee Koh
13
22
0
28 Jan 2019
Scalable Realistic Recommendation Datasets through Fractal Expansions
Scalable Realistic Recommendation Datasets through Fractal Expansions
Francois Belletti
K. Lakshmanan
Walid Krichene
Yi-Fan Chen
John R. Anderson
17
19
0
23 Jan 2019
Deep Generative Graph Distribution Learning for Synthetic Power Grids
Deep Generative Graph Distribution Learning for Synthetic Power Grids
Mahdi Khodayar
Jianhui Wang
Zhaoyu Wang
11
0
0
17 Jan 2019
Learning Vertex Representations for Bipartite Networks
Learning Vertex Representations for Bipartite Networks
Ming Gao
Xiangnan He
Leihui Chen
Tingting Liu
Jinglin Zhang
Aoying Zhou
11
22
0
16 Jan 2019
DRONE: a Distributed Subgraph-Centric Framework for Processing Large
  Scale Power-law Graphs
DRONE: a Distributed Subgraph-Centric Framework for Processing Large Scale Power-law Graphs
Xiaole Wen
Shuai Zhang
Haihang You
GNN
8
0
0
11 Dec 2018
SepNE: Bringing Separability to Network Embedding
SepNE: Bringing Separability to Network Embedding
Ziyao Li
Liang Zhang
Guojie Song
GNN
9
13
0
14 Nov 2018
Machine Learning in Network Centrality Measures: Tutorial and Outlook
Machine Learning in Network Centrality Measures: Tutorial and Outlook
F. Grando
L. Granville
Luís C. Lamb
20
55
0
28 Oct 2018
Network Classification Based Structural Analysis of Real Networks and
  their Model-Generated Counterparts
Network Classification Based Structural Analysis of Real Networks and their Model-Generated Counterparts
Marcell Nagy
Roland Molontay
GNN
9
5
0
19 Oct 2018
Sampling Theory for Graph Signals on Product Graphs
Sampling Theory for Graph Signals on Product Graphs
R. Varma
J. Kovacevic
6
9
0
26 Sep 2018
Motifs, Coherent Configurations and Second Order Network Generation
Motifs, Coherent Configurations and Second Order Network Generation
J. Bronski
T. Ferguson
20
1
0
13 Aug 2018
Growing Better Graphs With Latent-Variable Probabilistic Graph Grammars
Growing Better Graphs With Latent-Variable Probabilistic Graph Grammars
Xinyi Wang
Salvador Aguiñaga
Tim Weninger
David Chiang
20
1
0
11 Jun 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
6
448
0
23 May 2018
Semi-Blind Inference of Topologies and Dynamical Processes over Graphs
Semi-Blind Inference of Topologies and Dynamical Processes over Graphs
V. Ioannidis
Yanning Shen
G. Giannakis
14
57
0
16 May 2018
Predicting Graph Categories from Structural Properties
James P. Canning
Emma E. Ingram
Sammantha Nowak-Wolff
Adriana M. Ortiz
Nesreen Ahmed
Ryan A. Rossi
Karl R. B. Schmitt
S. Soundarajan
14
10
0
07 May 2018
Graphite: Iterative Generative Modeling of Graphs
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
8
295
0
28 Mar 2018
Learning Deep Generative Models of Graphs
Learning Deep Generative Models of Graphs
Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter W. Battaglia
GNN
AI4CE
18
650
0
08 Mar 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
6
824
0
24 Feb 2018
Scalable Label Propagation for Multi-relational Learning on the Tensor
  Product of Graphs
Scalable Label Propagation for Multi-relational Learning on the Tensor Product of Graphs
Zhuliu Li
Raphael Petegrosso
Shaden Smith
David Sterling
George Karypis
R. Kuang
19
2
0
20 Feb 2018
Steering Social Activity: A Stochastic Optimal Control Point Of View
Steering Social Activity: A Stochastic Optimal Control Point Of View
Ali Zarezade
A. De
U. Upadhyay
Hamid R. Rabiee
Manuel Gomez Rodriguez
LLMSV
18
34
0
19 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
14
211
0
14 Feb 2018
Community Detection in Partially Observable Social Networks
Community Detection in Partially Observable Social Networks
Cong Tran
Won-Yong Shin
Andreas Spitz
19
32
0
30 Dec 2017
Inference of Spatio-Temporal Functions over Graphs via Multi-Kernel
  Kriged Kalman Filtering
Inference of Spatio-Temporal Functions over Graphs via Multi-Kernel Kriged Kalman Filtering
V. Ioannidis
Daniel Romero
G. Giannakis
19
29
0
25 Nov 2017
Multi-Objective Maximization of Monotone Submodular Functions with
  Cardinality Constraint
Multi-Objective Maximization of Monotone Submodular Functions with Cardinality Constraint
R. Udwani
14
31
0
17 Nov 2017
Learning Graph Topological Features via GAN
Learning Graph Topological Features via GAN
Weiyi Liu
Hal Cooper
Min Hwan Oh
Fucai Yu
Pin-Yu Chen
Toyotaro Suzumura
Guangmin Hu
GAN
AI4CE
15
25
0
11 Sep 2017
Estimation of a Low-rank Topic-Based Model for Information Cascades
Estimation of a Low-rank Topic-Based Model for Information Cascades
Ming Yu
Varun Gupta
Mladen Kolar
22
7
0
06 Sep 2017
Using Graph Properties to Speed-up GPU-based Graph Traversal: A
  Model-driven Approach
Using Graph Properties to Speed-up GPU-based Graph Traversal: A Model-driven Approach
Merijn Verstraaten
A. Varbanescu
C. D. Laat
18
2
0
03 Aug 2017
Optimal modularity and memory capacity of neural reservoirs
Optimal modularity and memory capacity of neural reservoirs
Nathaniel Rodriguez
E. Izquierdo
Yong-Yeol Ahn
14
45
0
20 Jun 2017
Vectorization of Hybrid Breadth First Search on the Intel Xeon Phi
Vectorization of Hybrid Breadth First Search on the Intel Xeon Phi
Mireya Paredes
Graham D. Riley
M. Luján
14
4
0
07 Apr 2017
A Comparison of Parallel Graph Processing Implementations
A Comparison of Parallel Graph Processing Implementations
Samuel D. Pollard
Boyana Norris
15
12
0
06 Apr 2017
Horde of Bandits using Gaussian Markov Random Fields
Horde of Bandits using Gaussian Markov Random Fields
Sharan Vaswani
Mark W. Schmidt
L. Lakshmanan
6
14
0
07 Mar 2017
Previous
1234
Next