ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.2983
  4. Cited By
Zero Variance Markov Chain Monte Carlo for Bayesian Estimators
v1v2 (latest)

Zero Variance Markov Chain Monte Carlo for Bayesian Estimators

14 December 2010
Antonietta Mira
R. Solgi
D. Imparato
ArXiv (abs)PDFHTML

Papers citing "Zero Variance Markov Chain Monte Carlo for Bayesian Estimators"

36 / 36 papers shown
Title
Leveraging neural control variates for enhanced precision in lattice field theory
Paulo F. Bedaque
Hyunwoo Oh
85
6
0
13 Mar 2025
Pathwise Gradient Variance Reduction with Control Variates in
  Variational Inference
Pathwise Gradient Variance Reduction with Control Variates in Variational Inference
Kenyon Ng
Susan Wei
BDL
48
0
0
08 Oct 2024
Doubly Adaptive Importance Sampling
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
59
0
0
29 Apr 2024
Control Variates for MCMC
Control Variates for MCMC
Leah South
Matthew Sutton
48
0
0
12 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
135
30
0
09 Feb 2024
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev
  Embedding and Minimax Optimality
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality
Jose H. Blanchet
Haoxuan Chen
Yiping Lu
Lexing Ying
71
4
0
25 May 2023
Theoretical guarantees for neural control variates in MCMC
Theoretical guarantees for neural control variates in MCMC
Denis Belomestny
Artur Goldman
A. Naumov
S. Samsonov
BDLDRL
48
6
0
03 Apr 2023
Meta-learning Control Variates: Variance Reduction with Limited Data
Meta-learning Control Variates: Variance Reduction with Limited Data
Z. Sun
Chris J. Oates
F. Briol
BDL
94
9
0
08 Mar 2023
A Quadrature Rule combining Control Variates and Adaptive Importance
  Sampling
A Quadrature Rule combining Control Variates and Adaptive Importance Sampling
Rémi Leluc
Franccois Portier
Johan Segers
Aigerim Zhuman
75
2
0
24 May 2022
Variance Reduction for Metropolis-Hastings Samplers
Variance Reduction for Metropolis-Hastings Samplers
Angelos N. Alexopoulos
P. Dellaportas
Michalis K. Titsias
60
2
0
04 Mar 2022
Gradient Estimation with Discrete Stein Operators
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi
Yuhao Zhou
Jessica Hwang
Michalis K. Titsias
Lester W. Mackey
104
23
0
19 Feb 2022
Fast compression of MCMC output
Fast compression of MCMC output
Nicolas Chopin
Gabriel Ducrocq
16
5
0
09 Jul 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
101
35
0
07 May 2021
Post-Processing of MCMC
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
95
18
0
30 Mar 2021
Variance reduction for dependent sequences with applications to
  Stochastic Gradient MCMC
Variance reduction for dependent sequences with applications to Stochastic Gradient MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
72
6
0
16 Aug 2020
Stochastic Stein Discrepancies
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
113
38
0
06 Jul 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic
  Optimization
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
58
21
0
12 Jun 2020
Neural Control Variates
Neural Control Variates
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
BDL
107
56
0
02 Jun 2020
Semi-Exact Control Functionals From Sard's Method
Semi-Exact Control Functionals From Sard's Method
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
93
17
0
31 Jan 2020
Variance reduction for Markov chains with application to MCMC
Variance reduction for Markov chains with application to MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
BDL
75
30
0
08 Oct 2019
Particle Methods for Stochastic Differential Equation Mixed Effects
  Models
Particle Methods for Stochastic Differential Equation Mixed Effects Models
Imke Botha
Robert Kohn
Christopher C. Drovandi
51
21
0
25 Jul 2019
Kernelized Complete Conditional Stein Discrepancy
Kernelized Complete Conditional Stein Discrepancy
Raghav Singhal
Xintian Han
S. Lahlou
Rajesh Ranganath
87
7
0
09 Apr 2019
Variance reduction for additive functional of Markov chains via
  martingale representations
Variance reduction for additive functional of Markov chains via martingale representations
Denis Belomestny
Eric Moulines
S. Samsonov
36
1
0
18 Mar 2019
Regularized Zero-Variance Control Variates
Regularized Zero-Variance Control Variates
Leah F. South
Chris J. Oates
Antonietta Mira
Christopher C. Drovandi
BDL
133
19
0
13 Nov 2018
A Riemann-Stein Kernel Method
A Riemann-Stein Kernel Method
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
88
22
0
11 Oct 2018
Neural Control Variates for Variance Reduction
Neural Control Variates for Variance Reduction
Ruosi Wan
Mingjun Zhong
Haoyi Xiong
Zhanxing Zhu
BDLDRL
81
18
0
01 Jun 2018
Unbiased and Consistent Nested Sampling via Sequential Monte Carlo
Unbiased and Consistent Nested Sampling via Sequential Monte Carlo
R. Salomone
Leah F. South
A. M. Johansen
Christopher C. Drovandi
Dirk P. Kroese
122
34
0
10 May 2018
Empirical Variance Minimization with Applications in Variance Reduction
  and Optimal Control
Empirical Variance Minimization with Applications in Variance Reduction and Optimal Control
Denis Belomestny
L. Iosipoi
Q. Paris
Nikita Zhivotovskiy
93
8
0
13 Dec 2017
Zero Variance and Hamiltonian Monte Carlo Methods in GARCH Models
Zero Variance and Hamiltonian Monte Carlo Methods in GARCH Models
Rafael S. Paixão
R. Ehlers
25
1
0
20 Oct 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
91
101
0
16 Jun 2017
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
91
116
0
27 Oct 2016
Convergence Rates for a Class of Estimators Based on Stein's Method
Convergence Rates for a Class of Estimators Based on Stein's Method
Chris J. Oates
Jon Cockayne
F. Briol
Mark Girolami
83
57
0
10 Mar 2016
Accelerating pseudo-marginal Metropolis-Hastings by correlating
  auxiliary variables
Accelerating pseudo-marginal Metropolis-Hastings by correlating auxiliary variables
J. Dahlin
Fredrik Lindsten
J. Kronander
Thomas B. Schon
86
37
0
17 Nov 2015
Getting Started with Particle Metropolis-Hastings for Inference in
  Nonlinear Dynamical Models
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
J. Dahlin
Thomas B. Schon
97
25
0
05 Nov 2015
Exploiting Multi-Core Architectures for Reduced-Variance Estimation with
  Intractable Likelihoods
Exploiting Multi-Core Architectures for Reduced-Variance Estimation with Intractable Likelihoods
Nial Friel
Antonietta Mira
Chris J. Oates
107
26
0
20 Aug 2014
Split Sampling: Expectations, Normalisation and Rare Events
Split Sampling: Expectations, Normalisation and Rare Events
J. Birge
Changgee Chang
Nicholas G. Polson
113
8
0
03 Dec 2012
1