ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1103.5407
  4. Cited By
Data augmentation for non-Gaussian regression models using variance-mean
  mixtures
v1v2v3v4 (latest)

Data augmentation for non-Gaussian regression models using variance-mean mixtures

28 March 2011
Nicholas G. Polson
James G. Scott
ArXiv (abs)PDFHTML

Papers citing "Data augmentation for non-Gaussian regression models using variance-mean mixtures"

12 / 12 papers shown
Title
Logistic-beta processes for dependent random probabilities with beta marginals
Logistic-beta processes for dependent random probabilities with beta marginals
Changwoo J. Lee
Alessandro Zito
Huiyan Sang
David B. Dunson
77
0
0
10 Feb 2024
Bayesian Inference for Gamma Models
Jingyu He
Nicholas G. Polson
Jianeng Xu
36
1
0
03 Jun 2021
The Reciprocal Bayesian LASSO
The Reciprocal Bayesian LASSO
Himel Mallick, PhD, FASA
Rahim Alhamzawi
Erina Paul
V. Svetnik
BDL
49
16
0
23 Jan 2020
Data Augementation with Polya Inverse Gamma
Data Augementation with Polya Inverse Gamma
Jingyu He
Nicholas G. Polson
Jianeng Xu
91
5
0
29 May 2019
Horseshoe Regularization for Machine Learning in Complex and Deep Models
Horseshoe Regularization for Machine Learning in Complex and Deep Models
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
70
15
0
24 Apr 2019
Data Augmentation for Bayesian Deep Learning
Data Augmentation for Bayesian Deep Learning
YueXing Wang
Nicholas G. Polson
Vadim Sokolov
UQCVBDL
85
5
0
22 Mar 2019
Global-Local Mixtures
Global-Local Mixtures
A. Bhadra
J. Datta
Nicholas G. Polson
Brandon T. Willard
40
5
0
26 Apr 2016
An Ensemble EM Algorithm for Bayesian Variable Selection
An Ensemble EM Algorithm for Bayesian Variable Selection
Jin Wang
Feng Liang
Yuan Ji
39
3
0
14 Mar 2016
A Statistical Theory of Deep Learning via Proximal Splitting
A Statistical Theory of Deep Learning via Proximal Splitting
Nicholas G. Polson
Brandon T. Willard
Massoud Heidari
46
5
0
20 Sep 2015
A MAP approach for $\ell_q$-norm regularized sparse parameter estimation
  using the EM algorithm
A MAP approach for ℓq\ell_qℓq​-norm regularized sparse parameter estimation using the EM algorithm
Rodrigo Carvajal
J. C. Agüero
Boris I. Godoy
Dimitrios Katselis
115
4
0
05 Aug 2015
Two New Algorithms for Solving Covariance Graphical Lasso Based on
  Coordinate Descent and ECM
Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM
Hao Wang
84
4
0
18 May 2012
The Bayesian Bridge
The Bayesian Bridge
Nicholas G. Polson
James G. Scott
Jesse Windle
101
155
0
11 Sep 2011
1