Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.6396
Cited By
Joint Optimization and Variable Selection of High-dimensional Gaussian Processes
27 June 2012
Bo Chen
R. Castro
Andreas Krause
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Joint Optimization and Variable Selection of High-dimensional Gaussian Processes"
37 / 37 papers shown
Title
High-dimensional Nonparametric Contextual Bandit Problem
Shogo Iwazaki
Junpei Komiyama
Masaaki Imaizumi
67
0
0
20 May 2025
High Dimensional Bayesian Optimization using Lasso Variable Selection
Vu Viet Hoang
Hung The Tran
Sunil R. Gupta
Vu Nguyen
183
0
0
02 Apr 2025
Sparse Nonparametric Contextual Bandits
Hamish Flynn
Julia Olkhovskaya
Paul Rognon-Vael
122
0
0
20 Mar 2025
Exploiting Concavity Information in Gaussian Process Contextual Bandit Optimization
Kevin Li
Eric Laber
88
0
0
13 Mar 2025
Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Taeyoung Yun
Kiyoung Om
Jaewoo Lee
Sujin Yun
Jinkyoo Park
119
2
0
24 Feb 2025
Safe Bayesian Optimization for the Control of High-Dimensional Embodied Systems
Yunyue Wei
Zeji Yi
Hongda Li
Saraswati Soedarmadji
Yanan Sui
99
0
0
31 Dec 2024
Swine Diet Design using Multi-objective Regionalized Bayesian Optimization
Gabriel D. Uribe-Guerra
Danny A. Múnera-Ramírez
Julián D. Arias-Londoño
63
0
0
19 Sep 2024
High dimensional Bayesian Optimization via Condensing-Expansion Projection
Jiaming Lu
Rong J.B. Zhu
79
1
0
09 Aug 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
72
5
0
07 Jun 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
108
5
0
18 Apr 2024
Adaptive Selective Sampling for Online Prediction with Experts
R. Castro
Fredrik Hellström
T. Erven
56
2
0
16 Feb 2023
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
88
233
0
07 Jun 2022
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
93
1
0
07 Oct 2021
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
70
13
0
15 Sep 2021
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
David Eriksson
M. Jankowiak
113
148
0
27 Feb 2021
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPM
AI4CE
73
17
0
24 Dec 2020
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Ang Yang
50
0
0
26 Oct 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
113
128
0
01 Jul 2020
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
106
474
0
03 Oct 2019
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
56
44
0
21 Jul 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
95
177
0
15 Mar 2019
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
212
11
0
27 Feb 2019
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
85
137
0
05 Jun 2018
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups
Paul Rolland
Jonathan Scarlett
Ilija Bogunovic
Volkan Cevher
98
115
0
20 Feb 2018
Learning to Race through Coordinate Descent Bayesian Optimisation
Rafael Oliveira
Fernando H. M. Rocha
Lionel Ott
Vitor Campagnolo Guizilini
F. Ramos
V. Grassi
47
9
0
17 Feb 2018
On the choice of the low-dimensional domain for global optimization via random embeddings
M. Binois
D. Ginsbourger
O. Roustant
100
62
0
18 Apr 2017
Embedded Bandits for Large-Scale Black-Box Optimization
Abdullah Al-Dujaili
Suresh Sundaram
45
4
0
27 Nov 2016
Optimization as Estimation with Gaussian Processes in Bandit Settings
Zi Wang
Bolei Zhou
Stefanie Jegelka
GP
107
78
0
21 Oct 2015
The Knowledge Gradient Policy Using A Sparse Additive Belief Model
Yan Li
Han Liu
Warrren B Powell
BDL
80
3
0
18 Mar 2015
High Dimensional Bayesian Optimisation and Bandits via Additive Models
Kirthevasan Kandasamy
J. Schneider
Barnabás Póczós
131
356
0
05 Mar 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
232
288
0
14 Jan 2015
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
132
95
0
27 Feb 2014
Stochastic continuum armed bandit problem of few linear parameters in high dimensions
Hemant Tyagi
Sebastian U. Stich
B. Gärtner
71
0
0
01 Dec 2013
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
124
92
0
24 Oct 2013
Continuum armed bandit problem of few variables in high dimensions
Hemant Tyagi
B. Gärtner
94
14
0
21 Apr 2013
Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration
E. Contal
David Buffoni
Alexandre Robicquet
Nicolas Vayatis
108
214
0
19 Apr 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
219
447
0
09 Jan 2013
1