ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6396
  4. Cited By
Joint Optimization and Variable Selection of High-dimensional Gaussian
  Processes

Joint Optimization and Variable Selection of High-dimensional Gaussian Processes

27 June 2012
Bo Chen
R. Castro
Andreas Krause
    GP
ArXiv (abs)PDFHTML

Papers citing "Joint Optimization and Variable Selection of High-dimensional Gaussian Processes"

37 / 37 papers shown
Title
High-dimensional Nonparametric Contextual Bandit Problem
High-dimensional Nonparametric Contextual Bandit Problem
Shogo Iwazaki
Junpei Komiyama
Masaaki Imaizumi
67
0
0
20 May 2025
High Dimensional Bayesian Optimization using Lasso Variable Selection
High Dimensional Bayesian Optimization using Lasso Variable Selection
Vu Viet Hoang
Hung The Tran
Sunil R. Gupta
Vu Nguyen
183
0
0
02 Apr 2025
Sparse Nonparametric Contextual Bandits
Sparse Nonparametric Contextual Bandits
Hamish Flynn
Julia Olkhovskaya
Paul Rognon-Vael
122
0
0
20 Mar 2025
Exploiting Concavity Information in Gaussian Process Contextual Bandit Optimization
Kevin Li
Eric Laber
88
0
0
13 Mar 2025
Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Posterior Inference with Diffusion Models for High-dimensional Black-box Optimization
Taeyoung Yun
Kiyoung Om
Jaewoo Lee
Sujin Yun
Jinkyoo Park
119
2
0
24 Feb 2025
Safe Bayesian Optimization for the Control of High-Dimensional Embodied Systems
Safe Bayesian Optimization for the Control of High-Dimensional Embodied Systems
Yunyue Wei
Zeji Yi
Hongda Li
Saraswati Soedarmadji
Yanan Sui
99
0
0
31 Dec 2024
Swine Diet Design using Multi-objective Regionalized Bayesian
  Optimization
Swine Diet Design using Multi-objective Regionalized Bayesian Optimization
Gabriel D. Uribe-Guerra
Danny A. Múnera-Ramírez
Julián D. Arias-Londoño
63
0
0
19 Sep 2024
High dimensional Bayesian Optimization via Condensing-Expansion
  Projection
High dimensional Bayesian Optimization via Condensing-Expansion Projection
Jiaming Lu
Rong J.B. Zhu
79
1
0
09 Aug 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
72
5
0
07 Jun 2024
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Dawei Zhan
108
5
0
18 Apr 2024
Adaptive Selective Sampling for Online Prediction with Experts
Adaptive Selective Sampling for Online Prediction with Experts
R. Castro
Fredrik Hellström
T. Erven
56
2
0
16 Feb 2023
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
88
233
0
07 Jun 2022
Scaling Bayesian Optimization With Game Theory
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
93
1
0
07 Oct 2021
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
70
13
0
15 Sep 2021
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
  Subspaces
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
David Eriksson
M. Jankowiak
113
148
0
27 Feb 2021
High-Dimensional Bayesian Optimization via Tree-Structured Additive
  Models
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
E. Han
Ishank Arora
Jonathan Scarlett
TPMAI4CE
73
17
0
24 Dec 2020
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Ang Yang
50
0
0
26 Oct 2020
Learning Search Space Partition for Black-box Optimization using Monte
  Carlo Tree Search
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
113
128
0
01 Jul 2020
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
106
474
0
03 Oct 2019
High Dimensional Bayesian Optimization via Supervised Dimension
  Reduction
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
56
44
0
21 Jul 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
95
177
0
15 Mar 2019
High-dimensional Bayesian optimization using low-dimensional feature
  spaces
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
212
11
0
27 Feb 2019
BOCK : Bayesian Optimization with Cylindrical Kernels
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
85
137
0
05 Jun 2018
High-Dimensional Bayesian Optimization via Additive Models with
  Overlapping Groups
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups
Paul Rolland
Jonathan Scarlett
Ilija Bogunovic
Volkan Cevher
98
115
0
20 Feb 2018
Learning to Race through Coordinate Descent Bayesian Optimisation
Learning to Race through Coordinate Descent Bayesian Optimisation
Rafael Oliveira
Fernando H. M. Rocha
Lionel Ott
Vitor Campagnolo Guizilini
F. Ramos
V. Grassi
47
9
0
17 Feb 2018
On the choice of the low-dimensional domain for global optimization via
  random embeddings
On the choice of the low-dimensional domain for global optimization via random embeddings
M. Binois
D. Ginsbourger
O. Roustant
100
62
0
18 Apr 2017
Embedded Bandits for Large-Scale Black-Box Optimization
Embedded Bandits for Large-Scale Black-Box Optimization
Abdullah Al-Dujaili
Suresh Sundaram
45
4
0
27 Nov 2016
Optimization as Estimation with Gaussian Processes in Bandit Settings
Optimization as Estimation with Gaussian Processes in Bandit Settings
Zi Wang
Bolei Zhou
Stefanie Jegelka
GP
107
78
0
21 Oct 2015
The Knowledge Gradient Policy Using A Sparse Additive Belief Model
The Knowledge Gradient Policy Using A Sparse Additive Belief Model
Yan Li
Han Liu
Warrren B Powell
BDL
80
3
0
18 Mar 2015
High Dimensional Bayesian Optimisation and Bandits via Additive Models
High Dimensional Bayesian Optimisation and Bandits via Additive Models
Kirthevasan Kandasamy
J. Schneider
Barnabás Póczós
131
356
0
05 Mar 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based
  Statistical Models
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
232
288
0
14 Jan 2015
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
132
95
0
27 Feb 2014
Stochastic continuum armed bandit problem of few linear parameters in
  high dimensions
Stochastic continuum armed bandit problem of few linear parameters in high dimensions
Hemant Tyagi
Sebastian U. Stich
B. Gärtner
73
0
0
01 Dec 2013
Active Learning of Linear Embeddings for Gaussian Processes
Active Learning of Linear Embeddings for Gaussian Processes
Roman Garnett
Michael A. Osborne
Philipp Hennig
GP
124
92
0
24 Oct 2013
Continuum armed bandit problem of few variables in high dimensions
Continuum armed bandit problem of few variables in high dimensions
Hemant Tyagi
B. Gärtner
96
14
0
21 Apr 2013
Parallel Gaussian Process Optimization with Upper Confidence Bound and
  Pure Exploration
Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration
E. Contal
David Buffoni
Alexandre Robicquet
Nicolas Vayatis
110
214
0
19 Apr 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
219
447
0
09 Jan 2013
1