ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

35 / 35 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
111
2
0
16 May 2025
Quantization-Free Autoregressive Action Transformer
Quantization-Free Autoregressive Action Transformer
Ziyad Sheebaelhamd
Michael Tschannen
Michael Muehlebach
Claire Vernade
68
0
0
18 Mar 2025
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Vidhi Lalchand
Anna-Christina Eilers
85
0
0
27 Feb 2025
The Odyssey of the Fittest: Can Agents Survive and Still Be Good?
The Odyssey of the Fittest: Can Agents Survive and Still Be Good?
Dylan Waldner
Risto Miikkulainen
74
0
0
08 Feb 2025
Predictive Coresets
Predictive Coresets
Bernardo Flores
68
0
0
08 Feb 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
123
1
0
28 Jan 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
72
1
0
30 Oct 2024
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Massimo Bilancia
Samuele Magro
55
0
0
29 Oct 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
59
2
0
29 Aug 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
59
0
0
09 Apr 2024
Variational Entropy Search for Adjusting Expected Improvement
Variational Entropy Search for Adjusting Expected Improvement
Nuojin Cheng
Stephen Becker
39
1
0
17 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
81
20
0
07 Feb 2024
Demystifying Variational Diffusion Models
Demystifying Variational Diffusion Models
Fabio De Sousa Ribeiro
Ben Glocker
DiffM
41
0
0
11 Jan 2024
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
55
13
0
23 Mar 2023
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
118
8
0
24 May 2022
Parallel Streaming Wasserstein Barycenters
Parallel Streaming Wasserstein Barycenters
Matthew Staib
Sebastian Claici
Justin Solomon
Stefanie Jegelka
27
89
0
21 May 2017
Variational Inference for Sparse and Undirected Models
Variational Inference for Sparse and Undirected Models
John Ingraham
D. Marks
47
8
0
11 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
75
70
0
31 Dec 2015
Inferring Parameters and Structure of Latent Variable Models by
  Variational Bayes
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
H. Attias
CML
BDL
40
666
0
23 Jan 2013
Variational Approximations between Mean Field Theory and the Junction
  Tree Algorithm
Variational Approximations between Mean Field Theory and the Junction Tree Algorithm
W. Wiegerinck
58
102
0
16 Jan 2013
Expectation-Propogation for the Generative Aspect Model
Expectation-Propogation for the Generative Aspect Model
T. Minka
John D. Lafferty
123
573
0
12 Dec 2012
Nested Hierarchical Dirichlet Processes
Nested Hierarchical Dirichlet Processes
John Paisley
Chong-Jun Wang
David M. Blei
Michael I. Jordan
BDL
47
234
0
25 Oct 2012
A Generalized Mean Field Algorithm for Variational Inference in
  Exponential Families
A Generalized Mean Field Algorithm for Variational Inference in Exponential Families
Eric Xing
Michael I. Jordan
Stuart J. Russell
54
253
0
19 Oct 2012
Variational Inference in Nonconjugate Models
Variational Inference in Nonconjugate Models
Chong-Jun Wang
David M. Blei
BDL
61
227
0
19 Sep 2012
Sparse Stochastic Inference for Latent Dirichlet allocation
Sparse Stochastic Inference for Latent Dirichlet allocation
David M. Mimno
Matt Hoffman
David M. Blei
BDL
36
158
0
27 Jun 2012
Variational Bayesian Inference with Stochastic Search
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
64
496
0
27 Jun 2012
Nonparametric variational inference
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
79
153
0
18 Jun 2012
Continuous Time Dynamic Topic Models
Continuous Time Dynamic Topic Models
Chong-Jun Wang
David M. Blei
David Heckerman
52
511
0
13 Jun 2012
On Smoothing and Inference for Topic Models
On Smoothing and Inference for Topic Models
A. Asuncion
Max Welling
Padhraic Smyth
Yee Whye Teh
BDL
48
601
0
09 May 2012
A Tutorial on Bayesian Nonparametric Models
A Tutorial on Bayesian Nonparametric Models
S. Gershman
David M. Blei
77
594
0
14 Jun 2011
The Discrete Infinite Logistic Normal Distribution
The Discrete Infinite Logistic Normal Distribution
John Paisley
Chong-Jun Wang
David M. Blei
79
87
0
24 Mar 2011
Bayesian Nonparametric Inference of Switching Linear Dynamical Systems
Bayesian Nonparametric Inference of Switching Linear Dynamical Systems
E. Fox
Erik B. Sudderth
Michael I. Jordan
A. Willsky
57
244
0
19 Mar 2010
Online Learning for Matrix Factorization and Sparse Coding
Online Learning for Matrix Factorization and Sparse Coding
Julien Mairal
Francis R. Bach
Jean Ponce
Guillermo Sapiro
122
2,614
0
01 Aug 2009
A sticky HDP-HMM with application to speaker diarization
A sticky HDP-HMM with application to speaker diarization
E. Fox
Erik B. Sudderth
Michael I. Jordan
A. Willsky
68
380
0
15 May 2009
Online EM Algorithm for Latent Data Models
Online EM Algorithm for Latent Data Models
Olivier Cappé
Eric Moulines
95
479
0
27 Dec 2007
1