Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1211.0358
Cited By
Deep Gaussian Processes
2 November 2012
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gaussian Processes"
26 / 26 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
93
0
0
24 Mar 2025
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
61
0
0
21 Jan 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
126
0
0
20 Jan 2025
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
91
2
0
10 Jan 2025
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
51
0
0
07 Nov 2024
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
70
0
0
31 Oct 2024
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
59
0
0
08 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
83
0
0
02 Oct 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
91
0
0
01 Jul 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
71
4
0
05 Jun 2024
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
60
5
0
04 Mar 2024
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Yue Liu
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
41
0
0
27 May 2023
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
73
1
0
07 Jun 2022
Machine Learning for Reliability Engineering and Safety Applications: Review of Current Status and Future Opportunities
Zhaoyi Xu
J. Saleh
46
342
0
19 Aug 2020
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OOD
AI4Cl
AI4CE
29
3
0
12 Aug 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
61
197
0
28 Oct 2019
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
110
685
0
06 Dec 2017
Avoiding pathologies in very deep networks
David Duvenaud
Oren Rippel
Ryan P. Adams
Zoubin Ghahramani
ODL
BDL
74
158
0
24 Feb 2014
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
47
150
0
06 Feb 2014
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
70
1,226
0
26 Sep 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
174
2,605
0
29 Jun 2012
Manifold Relevance Determination
Andreas C. Damianou
Carl Henrik Ek
Michalis K. Titsias
Neil D. Lawrence
49
109
0
18 Jun 2012
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
114
192
0
19 Oct 2011
Variational Gaussian Process Dynamical Systems
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
DRL
62
105
0
25 Jul 2011
Additive Kernels for Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
52
25
0
21 Mar 2011
On Nonparametric Guidance for Learning Autoencoder Representations
Jasper Snoek
Ryan P. Adams
Hugo Larochelle
DRL
SSL
290
20
0
08 Feb 2011
1