ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.0358
  4. Cited By
Deep Gaussian Processes

Deep Gaussian Processes

2 November 2012
Andreas C. Damianou
Neil D. Lawrence
    GP
    BDL
ArXivPDFHTML

Papers citing "Deep Gaussian Processes"

26 / 26 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
93
0
0
24 Mar 2025
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
61
0
0
21 Jan 2025
Bayesian Adaptive Calibration and Optimal Design
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
126
0
0
20 Jan 2025
Stochastic Process Learning via Operator Flow Matching
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
91
2
0
10 Jan 2025
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
51
0
0
07 Nov 2024
Residual Deep Gaussian Processes on Manifolds
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
70
0
0
31 Oct 2024
Federated Neural Nonparametric Point Processes
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
59
0
0
08 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
83
0
0
02 Oct 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
91
0
0
01 Jul 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
71
4
0
05 Jun 2024
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
60
5
0
04 Mar 2024
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Yue Liu
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
41
0
0
27 May 2023
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
73
1
0
07 Jun 2022
Machine Learning for Reliability Engineering and Safety Applications:
  Review of Current Status and Future Opportunities
Machine Learning for Reliability Engineering and Safety Applications: Review of Current Status and Future Opportunities
Zhaoyi Xu
J. Saleh
46
342
0
19 Aug 2020
Machine Learning for Robust Identification of Complex Nonlinear
  Dynamical Systems: Applications to Earth Systems Modeling
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OOD
AI4Cl
AI4CE
29
3
0
12 Aug 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
61
197
0
28 Oct 2019
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
110
685
0
06 Dec 2017
Avoiding pathologies in very deep networks
Avoiding pathologies in very deep networks
David Duvenaud
Oren Rippel
Ryan P. Adams
Zoubin Ghahramani
ODL
BDL
74
158
0
24 Feb 2014
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
47
150
0
06 Feb 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
70
1,226
0
26 Sep 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
174
2,605
0
29 Jun 2012
Manifold Relevance Determination
Manifold Relevance Determination
Andreas C. Damianou
Carl Henrik Ek
Michalis K. Titsias
Neil D. Lawrence
49
109
0
18 Jun 2012
Gaussian Process Regression Networks
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
114
192
0
19 Oct 2011
Variational Gaussian Process Dynamical Systems
Variational Gaussian Process Dynamical Systems
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
DRL
62
105
0
25 Jul 2011
Additive Kernels for Gaussian Process Modeling
Additive Kernels for Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
52
25
0
21 Mar 2011
On Nonparametric Guidance for Learning Autoencoder Representations
On Nonparametric Guidance for Learning Autoencoder Representations
Jasper Snoek
Ryan P. Adams
Hugo Larochelle
DRL
SSL
290
20
0
08 Feb 2011
1