ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.1299
  4. Cited By
Automated Variational Inference in Probabilistic Programming

Automated Variational Inference in Probabilistic Programming

7 January 2013
David Wingate
T. Weber
    BDLTPM
ArXiv (abs)PDFHTML

Papers citing "Automated Variational Inference in Probabilistic Programming"

50 / 70 papers shown
Title
Amortized variational transdimensional inference
Laurence Davies
Dan Mackinlay
Rafael Oliveira
Scott A. Sisson
DRLBDL
116
0
0
05 Jun 2025
Massively Parallel Expectation Maximization For Approximate Posteriors
Thomas Heap
Sam Bowyer
Laurence Aitchison
69
0
0
11 Mar 2025
Automated Discovery of Pairwise Interactions from Unstructured Data
Automated Discovery of Pairwise Interactions from Unstructured Data
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton Earnshaw
Jason S. Hartford
75
5
0
11 Sep 2024
VISA: Variational Inference with Sequential Sample-Average
  Approximations
VISA: Variational Inference with Sequential Sample-Average Approximations
Heiko Zimmermann
C. A. Naesseth
Jan-Willem van de Meent
67
1
0
14 Mar 2024
Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
  via Reparameterisation and Smoothing
Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models via Reparameterisation and Smoothing
Dominik Wagner
Basim Khajwal
C.-H. Luke Ong
31
1
0
19 Feb 2024
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
71
2
0
21 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
63
2
0
01 Nov 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
59
0
0
23 Oct 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
95
21
0
04 Jun 2023
CAR-DESPOT: Causally-Informed Online POMDP Planning for Robots in
  Confounded Environments
CAR-DESPOT: Causally-Informed Online POMDP Planning for Robots in Confounded Environments
Ricardo Cannizzaro
Lars Kunze
59
10
0
13 Apr 2023
Sample Average Approximation for Black-Box VI
Sample Average Approximation for Black-Box VI
Javier Burroni
Justin Domke
Daniel Sheldon
67
4
0
13 Apr 2023
Fast and Correct Gradient-Based Optimisation for Probabilistic
  Programming via Smoothing
Fast and Correct Gradient-Based Optimisation for Probabilistic Programming via Smoothing
Basim Khajwal
C.-H. Luke Ong
Dominik Wagner
25
4
0
09 Jan 2023
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept
  Statistics
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept Statistics
Masataro Asai
77
0
0
08 Sep 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
98
10
0
22 Aug 2022
Fat-Tailed Variational Inference with Anisotropic Tail Adaptive Flows
Fat-Tailed Variational Inference with Anisotropic Tail Adaptive Flows
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
61
11
0
16 May 2022
Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
Edward Kim
Jay Shenoy
Sebastian Junges
Daniel J. Fremont
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
78
3
0
01 Dec 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OODMUBDL
129
6
0
01 Oct 2021
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
  Supervised Lesion Detection
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection
H. Akrami
Anand A. Joshi
Sergul Aydore
Richard M. Leahy
UQCV
73
4
0
20 Sep 2021
Encoding Domain Information with Sparse Priors for Inferring Explainable
  Latent Variables
Encoding Domain Information with Sparse Priors for Inferring Explainable Latent Variables
Arber Qoku
Florian Buettner
21
0
0
08 Jul 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
83
21
0
21 Jun 2021
Variational inference with a quantum computer
Variational inference with a quantum computer
Marcello Benedetti
Brian Coyle
Mattia Fiorentini
M. Lubasch
Matthias Rosenkranz
BDL
83
38
0
11 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
Automatic variational inference with cascading flows
Automatic variational inference with cascading flows
L. Ambrogioni
Gianluigi Silvestri
Marcel van Gerven
TPMBDL
46
10
0
09 Feb 2021
Variational Bayes survival analysis for unemployment modelling
Variational Bayes survival analysis for unemployment modelling
P. Boškoski
M. Perne
M. Ramesa
Biljana Mileva-Boshkoska
CML
67
10
0
03 Feb 2021
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
102
7
0
20 Oct 2020
Addressing Variance Shrinkage in Variational Autoencoders using Quantile
  Regression
Addressing Variance Shrinkage in Variational Autoencoders using Quantile Regression
H. Akrami
Anand A. Joshi
Sergul Aydore
Richard M. Leahy
UQCVDRL
43
5
0
18 Oct 2020
Training Multimodal Systems for Classification with Multiple Objectives
Training Multimodal Systems for Classification with Multiple Objectives
Jason Armitage
Shramana Thakur
Rishi Tripathi
Jens Lehmann
M. Maleshkova
51
1
0
26 Aug 2020
CPAS: the UK's National Machine Learning-based Hospital Capacity
  Planning System for COVID-19
CPAS: the UK's National Machine Learning-based Hospital Capacity Planning System for COVID-19
Zhaozhi Qian
Ahmed Alaa
Mihaela van der Schaar
76
41
0
27 Jul 2020
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables
Zhe Dong
A. Mnih
George Tucker
DRL
68
34
0
18 Jun 2020
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
  Policy Assessment using Compartmental Gaussian Processes
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian
Ahmed Alaa
M. Schaar
61
33
0
13 May 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
39
0
0
02 Mar 2020
Automatic structured variational inference
Automatic structured variational inference
L. Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
84
31
0
03 Feb 2020
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
70
20
0
29 Oct 2019
Amortized Rejection Sampling in Universal Probabilistic Programming
Amortized Rejection Sampling in Universal Probabilistic Programming
Saeid Naderiparizi
Adam Scibior
Andreas Munk
Mehrdad Ghadiri
A. G. Baydin
...
R. Zinkov
Philip Torr
Tom Rainforth
Yee Whye Teh
Frank Wood
69
7
0
20 Oct 2019
Probabilistic Models with Deep Neural Networks
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
57
12
0
09 Aug 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
70
26
0
20 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
94
416
0
25 Jun 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
104
7
0
20 Jun 2019
Provable Gradient Variance Guarantees for Black-Box Variational
  Inference
Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke
DRL
59
23
0
19 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
129
2,381
0
06 Jun 2019
Robust Variational Autoencoder
Robust Variational Autoencoder
H. Akrami
Anand A. Joshi
Jian Li
Sergul Aydore
Richard M. Leahy
DRL
87
21
0
23 May 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
74
36
0
24 Jan 2019
Credit Assignment Techniques in Stochastic Computation Graphs
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
98
45
0
07 Jan 2019
Effect Handling for Composable Program Transformations in Edward2
Effect Handling for Composable Program Transformations in Edward2
Dave Moore
Maria I. Gorinova
117
15
0
15 Nov 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
90
31
0
20 Jul 2018
Pathwise Derivatives for Multivariate Distributions
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
121
11
0
05 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
176
113
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
125
32
0
01 Jun 2018
Variational Rejection Sampling
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
126
32
0
05 Apr 2018
12
Next