ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.1299
  4. Cited By
Automated Variational Inference in Probabilistic Programming

Automated Variational Inference in Probabilistic Programming

7 January 2013
David Wingate
T. Weber
    BDLTPM
ArXiv (abs)PDFHTML

Papers citing "Automated Variational Inference in Probabilistic Programming"

20 / 70 papers shown
Title
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
Jakob N. Foerster
Gregory Farquhar
Maruan Al-Shedivat
Tim Rocktaschel
Eric Xing
Shimon Whiteson
102
97
0
14 Feb 2018
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
285
282
0
21 Mar 2017
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
91
116
0
27 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
111
82
0
18 Oct 2016
The Generalized Reparameterization Gradient
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
133
169
0
07 Oct 2016
Spreadsheet Probabilistic Programming
Spreadsheet Probabilistic Programming
Mike Wu
Yura N. Perov
Frank Wood
Hongseok Yang
49
3
0
14 Jun 2016
Applications of Probabilistic Programming (Master's thesis, 2015)
Applications of Probabilistic Programming (Master's thesis, 2015)
Yura N. Perov
55
4
0
31 May 2016
Neurally-Guided Procedural Models: Amortized Inference for Procedural
  Graphics Programs using Neural Networks
Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks
Daniel E. Ritchie
Anna T. Thomas
Pat Hanrahan
Noah D. Goodman
TPM
69
11
0
19 Mar 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
153
47
0
03 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
719
0
02 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
374
4,829
0
04 Jan 2016
Black-Box Policy Search with Probabilistic Programs
Black-Box Policy Search with Probabilistic Programs
Jan-Willem van de Meent
Brooks Paige
David Tolpin
Frank Wood
120
24
0
16 Jul 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
190
395
0
17 Jun 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
99
233
0
10 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
371
4,203
0
21 May 2015
Deep Exponential Families
Deep Exponential Families
Rajesh Ranganath
Linpeng Tang
Laurent Charlin
David M. Blei
BDL
67
153
0
10 Nov 2014
Venture: a higher-order probabilistic programming platform with
  programmable inference
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
106
256
0
01 Apr 2014
On Using Control Variates with Stochastic Approximation for Variational
  Bayes and its Connection to Stochastic Linear Regression
On Using Control Variates with Stochastic Approximation for Variational Bayes and its Connection to Stochastic Linear Regression
Tim Salimans
David A. Knowles
BDL
232
34
0
06 Jan 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
190
1,167
0
31 Dec 2013
D$^3$PO - Denoising, Deconvolving, and Decomposing Photon Observations
D3^33PO - Denoising, Deconvolving, and Decomposing Photon Observations
M. Selig
T. Ensslin
69
30
0
08 Nov 2013
Previous
12