Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.6064
Cited By
v1
v2 (latest)
Geodesic Monte Carlo on Embedded Manifolds
25 January 2013
Simon Byrne
Mark Girolami
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Geodesic Monte Carlo on Embedded Manifolds"
50 / 64 papers shown
Title
Geodesic Slice Sampler for Multimodal Distributions with Strong Curvature
Bernardo Williams
Hanlin Yu
Hoang Phuc Hau Luu
Georgios Arvanitidis
Arto Klami
108
0
0
28 Feb 2025
Functional Gradient Flows for Constrained Sampling
Shiyue Zhang
Longlin Yu
Ziheng Cheng
Cheng Zhang
61
0
0
30 Oct 2024
Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds
Tiangang Cui
Alex Gorodetsky
33
0
0
27 Oct 2024
Parameterizations for Gradient-based Markov Chain Monte Carlo on the Stiefel Manifold: A Comparative Study
Masahiro Tanaka
79
1
0
12 Feb 2024
Riemannian Langevin Monte Carlo schemes for sampling PSD matrices with fixed rank
Tianmin Yu
Shixin Zheng
Jianfeng Lu
Govind Menon
Xiangxiong Zhang
8
0
0
08 Sep 2023
Monte Carlo on manifolds in high dimensions
Kerun Xu
Miranda C. Holmes-Cerfon
53
2
0
21 Aug 2023
Warped geometric information on the optimisation of Euclidean functions
M. Hartmann
Bernardo Williams
Hanlin Yu
Mark Girolami
Alessandro Barp
Arto Klami
81
3
0
16 Aug 2023
On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers
Alain Durmus
Samuel Gruffaz
Miika Kailas
E. Saksman
M. Vihola
71
5
0
07 Jul 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
78
2
0
24 May 2023
Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping
Norman Marlier
Julien Gustin
O. Bruls
Gilles Louppe
76
0
0
18 Apr 2023
Geodesic slice sampling on the sphere
Michael Habeck
Mareike Hasenpflug
Shantanu Kodgirwar
Daniel Rudolf
82
10
0
19 Jan 2023
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
70
17
0
24 Oct 2022
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
Maxence Noble
Valentin De Bortoli
Alain Durmus
59
6
0
21 Oct 2022
Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent
Ruqi Zhang
Qiang Liu
Xin T. Tong
BDL
DRL
52
12
0
12 Oct 2022
Generalized Fiducial Inference on Differentiable Manifolds
Alexander C. Murph
Jan Hannig
Jonathan P. Williams
59
3
0
30 Sep 2022
Sampling Constrained Continuous Probability Distributions: A Review
Shiwei Lan
Lulu Kang
48
6
0
26 Sep 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
Gabriel Loaiza-Ganem
Anthony L. Caterini
Jesse C. Cresswell
AI4CE
73
3
0
22 Jun 2022
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
95
27
0
17 Jun 2022
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Peter Whalley
Daniel Paulin
Benedict Leimkuhler
54
4
0
09 Jun 2022
Randomized geometric tools for anomaly detection in stock markets
Cyril Bachelard
Apostolos Chalkis
Vissarion Fisikopoulos
Elias P. Tsigaridas
55
1
0
08 May 2022
Efficient Random Walks on Riemannian Manifolds
S. Schwarz
M. Herrmann
A. Sturm
M. Wardetzky
52
7
0
02 Feb 2022
Dimension-independent Markov chain Monte Carlo on the sphere
H. Lie
Daniel Rudolf
Björn Sprungk
T. Sullivan
74
6
0
22 Dec 2021
An Efficient Scheme for Sampling in Constrained Domains
S. Chaudhry
Daniel Lautzenheiser
K. Ghosh
31
3
0
21 Oct 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
77
17
0
06 May 2021
Evaluating the Implicit Midpoint Integrator for Riemannian Manifold Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
43
3
0
14 Feb 2021
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Mufan Li
Murat A. Erdogdu
118
29
0
21 Oct 2020
Magnetic Manifold Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
20
5
0
15 Oct 2020
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev
Tianlin Li
Qi Lei
Ioannis Panageas
65
20
0
11 Oct 2020
A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method using Gaussian Processes
Raphael Gautier
Piyush Pandita
Sayan Ghosh
D. Mavris
29
3
0
08 Aug 2020
Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian Processes
Panagiotis Tsilifis
Piyush Pandita
Sayan Ghosh
Valeria Andreoli
T. Vandeputte
Liping Wang
35
19
0
05 Aug 2020
Normal-bundle Bootstrap
Ruda Zhang
R. Ghanem
28
5
0
27 Jul 2020
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang
Shuyu Cheng
Yueru Li
Jun Zhu
Bo Zhang
69
14
0
18 Feb 2020
Simulating sticky particles: A Monte Carlo method to sample a stratification
Miranda C. Holmes-Cerfon
48
10
0
21 Dec 2019
Multi-Rank Sparse and Functional PCA: Manifold Optimization and Iterative Deflation Techniques
Michael Weylandt
48
4
0
28 Jul 2019
Monte Carlo simulation on the Stiefel manifold via polar expansion
Michael Jauch
P. Hoff
David B. Dunson
49
31
0
18 Jun 2019
Rotation Invariant Householder Parameterization for Bayesian PCA
Rajbir-Singh Nirwan
Nils Bertschinger
35
6
0
12 May 2019
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
86
38
0
11 Apr 2019
Adversarial Networks for Camera Pose Regression and Refinement
Mai Bui
Christoph Baur
Nassir Navab
Slobodan Ilic
Shadi Albarqouni
GAN
130
20
0
15 Mar 2019
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction
Alessandro Barp
A. Kennedy
Mark Girolami
35
9
0
07 Mar 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
106
22
0
01 Feb 2019
Hamiltonian Monte-Carlo for Orthogonal Matrices
V. Yanush
D. Kropotov
28
1
0
23 Jan 2019
A Riemann-Stein Kernel Method
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
90
22
0
11 Oct 2018
Random orthogonal matrices and the Cayley transform
Michael Jauch
P. Hoff
David B. Dunson
129
19
0
05 Oct 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
92
38
0
31 May 2018
Note on the geodesic Monte Carlo
Andrew J Holbrook
25
2
0
14 May 2018
Stochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for Bayesian Inference
Zhize Li
Tianyi Zhang
Shuyu Cheng
Jun Yu Li
Jian Li
BDL
67
18
0
29 Mar 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Diversity-Promoting Bayesian Learning of Latent Variable Models
P. Xie
Jun Zhu
Eric Xing
68
33
0
23 Nov 2017
Bayesian Inference over the Stiefel Manifold via the Givens Representation
A. Pourzanjani
Richard M. Jiang
Brian Mitchell
P. Atzberger
Linda R. Petzold
70
6
0
25 Oct 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
82
31
0
08 May 2017
1
2
Next