ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.6064
  4. Cited By
Geodesic Monte Carlo on Embedded Manifolds
v1v2 (latest)

Geodesic Monte Carlo on Embedded Manifolds

25 January 2013
Simon Byrne
Mark Girolami
ArXiv (abs)PDFHTML

Papers citing "Geodesic Monte Carlo on Embedded Manifolds"

50 / 64 papers shown
Title
Geodesic Slice Sampler for Multimodal Distributions with Strong Curvature
Geodesic Slice Sampler for Multimodal Distributions with Strong Curvature
Bernardo Williams
Hanlin Yu
Hoang Phuc Hau Luu
Georgios Arvanitidis
Arto Klami
108
0
0
28 Feb 2025
Functional Gradient Flows for Constrained Sampling
Functional Gradient Flows for Constrained Sampling
Shiyue Zhang
Longlin Yu
Ziheng Cheng
Cheng Zhang
61
0
0
30 Oct 2024
Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo
  on Stiefel manifolds
Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds
Tiangang Cui
Alex Gorodetsky
35
0
0
27 Oct 2024
Parameterizations for Gradient-based Markov Chain Monte Carlo on the
  Stiefel Manifold: A Comparative Study
Parameterizations for Gradient-based Markov Chain Monte Carlo on the Stiefel Manifold: A Comparative Study
Masahiro Tanaka
79
1
0
12 Feb 2024
Riemannian Langevin Monte Carlo schemes for sampling PSD matrices with
  fixed rank
Riemannian Langevin Monte Carlo schemes for sampling PSD matrices with fixed rank
Tianmin Yu
Shixin Zheng
Jianfeng Lu
Govind Menon
Xiangxiong Zhang
10
0
0
08 Sep 2023
Monte Carlo on manifolds in high dimensions
Monte Carlo on manifolds in high dimensions
Kerun Xu
Miranda C. Holmes-Cerfon
53
2
0
21 Aug 2023
Warped geometric information on the optimisation of Euclidean functions
Warped geometric information on the optimisation of Euclidean functions
M. Hartmann
Bernardo Williams
Hanlin Yu
Mark Girolami
Alessandro Barp
Arto Klami
81
3
0
16 Aug 2023
On the convergence of dynamic implementations of Hamiltonian Monte Carlo
  and No U-Turn Samplers
On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers
Alain Durmus
Samuel Gruffaz
Miika Kailas
E. Saksman
M. Vihola
71
5
0
07 Jul 2023
Learning Rate Free Sampling in Constrained Domains
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
78
2
0
24 May 2023
Implicit representation priors meet Riemannian geometry for Bayesian
  robotic grasping
Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping
Norman Marlier
Julien Gustin
O. Bruls
Gilles Louppe
76
0
0
18 Apr 2023
Geodesic slice sampling on the sphere
Geodesic slice sampling on the sphere
Michael Habeck
Mareike Hasenpflug
Shantanu Kodgirwar
Daniel Rudolf
82
10
0
19 Jan 2023
Sampling with Mollified Interaction Energy Descent
Sampling with Mollified Interaction Energy Descent
Lingxiao Li
Qiang Liu
Anna Korba
Mikhail Yurochkin
Justin Solomon
70
17
0
24 Oct 2022
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian
  Monte Carlo
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo
Maxence Noble
Valentin De Bortoli
Alain Durmus
59
6
0
21 Oct 2022
Sampling in Constrained Domains with Orthogonal-Space Variational
  Gradient Descent
Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent
Ruqi Zhang
Qiang Liu
Xin T. Tong
BDLDRL
52
12
0
12 Oct 2022
Generalized Fiducial Inference on Differentiable Manifolds
Generalized Fiducial Inference on Differentiable Manifolds
Alexander C. Murph
Jan Hannig
Jonathan P. Williams
59
3
0
30 Sep 2022
Sampling Constrained Continuous Probability Distributions: A Review
Sampling Constrained Continuous Probability Distributions: A Review
Shiwei Lan
Lulu Kang
48
6
0
26 Sep 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
Gabriel Loaiza-Ganem
Anthony L. Caterini
Jesse C. Cresswell
AI4CE
73
3
0
22 Jun 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
95
27
0
17 Jun 2022
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Peter Whalley
Daniel Paulin
Benedict Leimkuhler
61
4
0
09 Jun 2022
Randomized geometric tools for anomaly detection in stock markets
Randomized geometric tools for anomaly detection in stock markets
Cyril Bachelard
Apostolos Chalkis
Vissarion Fisikopoulos
Elias P. Tsigaridas
55
1
0
08 May 2022
Efficient Random Walks on Riemannian Manifolds
Efficient Random Walks on Riemannian Manifolds
S. Schwarz
M. Herrmann
A. Sturm
M. Wardetzky
52
7
0
02 Feb 2022
Dimension-independent Markov chain Monte Carlo on the sphere
Dimension-independent Markov chain Monte Carlo on the sphere
H. Lie
Daniel Rudolf
Björn Sprungk
T. Sullivan
80
6
0
22 Dec 2021
An Efficient Scheme for Sampling in Constrained Domains
An Efficient Scheme for Sampling in Constrained Domains
S. Chaudhry
Daniel Lautzenheiser
K. Ghosh
31
3
0
21 Oct 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
77
17
0
06 May 2021
Evaluating the Implicit Midpoint Integrator for Riemannian Manifold
  Hamiltonian Monte Carlo
Evaluating the Implicit Midpoint Integrator for Riemannian Manifold Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
45
3
0
14 Feb 2021
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Mufan Li
Murat A. Erdogdu
118
29
0
21 Oct 2020
Magnetic Manifold Hamiltonian Monte Carlo
Magnetic Manifold Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
20
5
0
15 Oct 2020
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet
  Log-Sobolev
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev
Tianlin Li
Qi Lei
Ioannis Panageas
65
20
0
11 Oct 2020
A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method
  using Gaussian Processes
A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method using Gaussian Processes
Raphael Gautier
Piyush Pandita
Sayan Ghosh
D. Mavris
29
3
0
08 Aug 2020
Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian
  Processes
Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian Processes
Panagiotis Tsilifis
Piyush Pandita
Sayan Ghosh
Valeria Andreoli
T. Vandeputte
Liping Wang
35
19
0
05 Aug 2020
Normal-bundle Bootstrap
Normal-bundle Bootstrap
Ruda Zhang
R. Ghanem
30
5
0
27 Jul 2020
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang
Shuyu Cheng
Yueru Li
Jun Zhu
Bo Zhang
69
14
0
18 Feb 2020
Simulating sticky particles: A Monte Carlo method to sample a
  stratification
Simulating sticky particles: A Monte Carlo method to sample a stratification
Miranda C. Holmes-Cerfon
48
10
0
21 Dec 2019
Multi-Rank Sparse and Functional PCA: Manifold Optimization and
  Iterative Deflation Techniques
Multi-Rank Sparse and Functional PCA: Manifold Optimization and Iterative Deflation Techniques
Michael Weylandt
48
4
0
28 Jul 2019
Monte Carlo simulation on the Stiefel manifold via polar expansion
Monte Carlo simulation on the Stiefel manifold via polar expansion
Michael Jauch
P. Hoff
David B. Dunson
49
31
0
18 Jun 2019
Rotation Invariant Householder Parameterization for Bayesian PCA
Rotation Invariant Householder Parameterization for Bayesian PCA
Rajbir-Singh Nirwan
Nils Bertschinger
37
6
0
12 May 2019
Probabilistic Permutation Synchronization using the Riemannian Structure
  of the Birkhoff Polytope
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
86
38
0
11 Apr 2019
Adversarial Networks for Camera Pose Regression and Refinement
Adversarial Networks for Camera Pose Regression and Refinement
Mai Bui
Christoph Baur
Nassir Navab
Slobodan Ilic
Shadi Albarqouni
GAN
130
20
0
15 Mar 2019
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via
  Symplectic Reduction
Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction
Alessandro Barp
A. Kennedy
Mark Girolami
35
9
0
07 Mar 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
106
22
0
01 Feb 2019
Hamiltonian Monte-Carlo for Orthogonal Matrices
Hamiltonian Monte-Carlo for Orthogonal Matrices
V. Yanush
D. Kropotov
30
1
0
23 Jan 2019
A Riemann-Stein Kernel Method
A Riemann-Stein Kernel Method
Alessandro Barp
Christine J. Oates
Emilio Porcu
Mark Girolami
90
22
0
11 Oct 2018
Random orthogonal matrices and the Cayley transform
Random orthogonal matrices and the Cayley transform
Michael Jauch
P. Hoff
David B. Dunson
129
19
0
05 Oct 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered
  Geodesic MCMC
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
92
38
0
31 May 2018
Note on the geodesic Monte Carlo
Note on the geodesic Monte Carlo
Andrew J Holbrook
30
2
0
14 May 2018
Stochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for
  Bayesian Inference
Stochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for Bayesian Inference
Zhize Li
Tianyi Zhang
Shuyu Cheng
Jun Yu Li
Jian Li
BDL
69
18
0
29 Mar 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Diversity-Promoting Bayesian Learning of Latent Variable Models
Diversity-Promoting Bayesian Learning of Latent Variable Models
P. Xie
Jun Zhu
Eric Xing
70
33
0
23 Nov 2017
Bayesian Inference over the Stiefel Manifold via the Givens
  Representation
Bayesian Inference over the Stiefel Manifold via the Givens Representation
A. Pourzanjani
Richard M. Jiang
Brian Mitchell
P. Atzberger
Linda R. Petzold
70
6
0
25 Oct 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
82
31
0
08 May 2017
12
Next