Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1303.0818
Cited By
v1
v2
v3
v4
v5 (latest)
Riemannian metrics for neural networks I: feedforward networks
4 March 2013
Yann Ollivier
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Riemannian metrics for neural networks I: feedforward networks"
50 / 68 papers shown
Title
Deterministic Bounds and Random Estimates of Metric Tensors on Neuromanifolds
Ke Sun
23
0
0
19 May 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
162
1
0
14 Dec 2024
Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
Minhyuk Seo
Hyunseo Koh
Jonghyun Choi
100
3
0
19 Oct 2024
Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models
Ji Liu
Jiaxiang Ren
Ruoming Jin
Zijie Zhang
Yang Zhou
P. Valduriez
Dejing Dou
FedML
91
6
0
30 Sep 2024
Tradeoffs of Diagonal Fisher Information Matrix Estimators
Alexander Soen
Ke Sun
71
3
0
08 Feb 2024
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
Hyenkyun Woo
42
0
0
26 Dec 2023
Adapting Newton's Method to Neural Networks through a Summary of Higher-Order Derivatives
Pierre Wolinski
ODL
161
0
0
06 Dec 2023
Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic System Identification with Application to Audio Processing
Karim Helwani
Erfan Soltanmohammadi
Michael M. Goodwin
48
0
0
10 Oct 2023
On the Fisher-Rao Gradient of the Evidence Lower Bound
Nihat Ay
Jesse van Oostrum
15
1
0
20 Jul 2023
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
Kazuki Osawa
Satoki Ishikawa
Rio Yokota
Shigang Li
Torsten Hoefler
ODL
92
15
0
08 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
84
5
0
01 May 2023
Analysis and Comparison of Two-Level KFAC Methods for Training Deep Neural Networks
Abdoulaye Koroko
A. Anciaux-Sedrakian
I. B. Gharbia
Valérie Garès
M. Haddou
Quang-Huy Tran
60
0
0
31 Mar 2023
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
79
10
0
03 Feb 2023
On the Interpretability of Attention Networks
L. N. Pandey
Rahul Vashisht
H. G. Ramaswamy
73
5
0
30 Dec 2022
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
48
2
0
26 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
62
1
0
11 Oct 2022
Invariance Properties of the Natural Gradient in Overparametrised Systems
Jesse van Oostrum
J. Müller
Nihat Ay
63
9
0
30 Jun 2022
Information Geometry of Dropout Training
Masanari Kimura
H. Hino
44
2
0
22 Jun 2022
A Geometric Understanding of Natural Gradient
Qinxun Bai
S. Rosenberg
Wei Xu
70
2
0
13 Feb 2022
A Mini-Block Fisher Method for Deep Neural Networks
Achraf Bahamou
Shiqian Ma
Yi Ren
ODL
80
9
0
08 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
127
26
0
28 Jan 2022
Efficient Approximations of the Fisher Matrix in Neural Networks using Kronecker Product Singular Value Decomposition
Abdoulaye Koroko
A. Anciaux-Sedrakian
I. B. Gharbia
Valérie Garès
M. Haddou
Quang-Huy Tran
81
7
0
25 Jan 2022
Gradient representations in ReLU networks as similarity functions
Dániel Rácz
Balint Daroczy
FAtt
52
1
0
26 Oct 2021
On the Variance of the Fisher Information for Deep Learning
Alexander Soen
Ke Sun
FedML
FAtt
71
18
0
09 Jul 2021
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural Networks
Hidenori Tanaka
D. Kunin
113
31
0
06 May 2021
Wasserstein Proximal of GANs
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
GAN
50
47
0
13 Feb 2021
Input Similarity from the Neural Network Perspective
Guillaume Charpiat
N. Girard
Loris Felardos
Y. Tarabalka
95
76
0
10 Feb 2021
AsymptoticNG: A regularized natural gradient optimization algorithm with look-ahead strategy
Zedong Tang
Fenlong Jiang
Junke Song
Maoguo Gong
Hao Li
F. Yu
Zidong Wang
Min Wang
ODL
27
1
0
24 Dec 2020
Natural-gradient learning for spiking neurons
Elena Kreutzer
Walter Senn
Mihai A. Petrovici
38
13
0
23 Nov 2020
Understanding Approximate Fisher Information for Fast Convergence of Natural Gradient Descent in Wide Neural Networks
Ryo Karakida
Kazuki Osawa
80
26
0
02 Oct 2020
Natural Reweighted Wake-Sleep
Csongor-Huba Várady
Riccardo Volpi
Luigi Malagò
Nihat Ay
BDL
99
0
0
15 Aug 2020
On the Locality of the Natural Gradient for Deep Learning
Nihat Ay
11
0
0
21 May 2020
Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent
Pu Zhao
Pin-Yu Chen
Siyue Wang
Xinyu Lin
AAML
73
36
0
18 Feb 2020
Tangent Space Separability in Feedforward Neural Networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
45
3
0
18 Dec 2019
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
88
14
0
19 Oct 2019
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
65
28
0
14 Oct 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
101
219
0
29 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
113
126
0
27 May 2019
The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space
Yann Ollivier
82
21
0
03 Jan 2019
First-order and second-order variants of the gradient descent in a unified framework
Thomas Pierrot
Nicolas Perrin
Olivier Sigaud
ODL
69
7
0
18 Oct 2018
A Coordinate-Free Construction of Scalable Natural Gradient
Kevin Luk
Roger C. Grosse
56
11
0
30 Aug 2018
Fisher Information and Natural Gradient Learning of Random Deep Networks
S. Amari
Ryo Karakida
Masafumi Oizumi
71
36
0
22 Aug 2018
Expressive power of outer product manifolds on feed-forward neural networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
29
0
0
17 Jul 2018
Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis
Thomas George
César Laurent
Xavier Bouthillier
Nicolas Ballas
Pascal Vincent
ODL
103
156
0
11 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
193
146
0
04 Jun 2018
Sigsoftmax: Reanalysis of the Softmax Bottleneck
Sekitoshi Kanai
Yasuhiro Fujiwara
Yuki Yamanaka
S. Adachi
74
70
0
28 May 2018
Block Mean Approximation for Efficient Second Order Optimization
Yao Lu
Mehrtash Harandi
Leonid Sigal
Razvan Pascanu
ODL
62
4
0
16 Apr 2018
Accelerating Natural Gradient with Higher-Order Invariance
Yang Song
Jiaming Song
Stefano Ermon
72
23
0
04 Mar 2018
Train Feedfoward Neural Network with Layer-wise Adaptive Rate via Approximating Back-matching Propagation
Huishuai Zhang
Wei-neng Chen
Tie-Yan Liu
27
5
0
27 Feb 2018
Degeneration in VAE: in the Light of Fisher Information Loss
Huangjie Zheng
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
DRL
78
17
0
19 Feb 2018
1
2
Next