ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.0818
  4. Cited By
Riemannian metrics for neural networks I: feedforward networks
v1v2v3v4v5 (latest)

Riemannian metrics for neural networks I: feedforward networks

4 March 2013
Yann Ollivier
ArXiv (abs)PDFHTML

Papers citing "Riemannian metrics for neural networks I: feedforward networks"

50 / 68 papers shown
Title
Deterministic Bounds and Random Estimates of Metric Tensors on Neuromanifolds
Deterministic Bounds and Random Estimates of Metric Tensors on Neuromanifolds
Ke Sun
23
0
0
19 May 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
162
1
0
14 Dec 2024
Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
Minhyuk Seo
Hyunseo Koh
Jonghyun Choi
100
3
0
19 Oct 2024
Fisher Information-based Efficient Curriculum Federated Learning with
  Large Language Models
Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models
Ji Liu
Jiaxiang Ren
Ruoming Jin
Zijie Zhang
Yang Zhou
P. Valduriez
Dejing Dou
FedML
91
6
0
30 Sep 2024
Tradeoffs of Diagonal Fisher Information Matrix Estimators
Tradeoffs of Diagonal Fisher Information Matrix Estimators
Alexander Soen
Ke Sun
71
3
0
08 Feb 2024
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced
  linear classification
An extended asymmetric sigmoid with Perceptron (SIGTRON) for imbalanced linear classification
Hyenkyun Woo
42
0
0
26 Dec 2023
Adapting Newton's Method to Neural Networks through a Summary of Higher-Order Derivatives
Adapting Newton's Method to Neural Networks through a Summary of Higher-Order Derivatives
Pierre Wolinski
ODL
161
0
0
06 Dec 2023
Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic
  System Identification with Application to Audio Processing
Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic System Identification with Application to Audio Processing
Karim Helwani
Erfan Soltanmohammadi
Michael M. Goodwin
48
0
0
10 Oct 2023
On the Fisher-Rao Gradient of the Evidence Lower Bound
On the Fisher-Rao Gradient of the Evidence Lower Bound
Nihat Ay
Jesse van Oostrum
15
1
0
20 Jul 2023
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
ASDL: A Unified Interface for Gradient Preconditioning in PyTorch
Kazuki Osawa
Satoki Ishikawa
Rio Yokota
Shigang Li
Torsten Hoefler
ODL
92
15
0
08 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
84
5
0
01 May 2023
Analysis and Comparison of Two-Level KFAC Methods for Training Deep
  Neural Networks
Analysis and Comparison of Two-Level KFAC Methods for Training Deep Neural Networks
Abdoulaye Koroko
A. Anciaux-Sedrakian
I. B. Gharbia
Valérie Garès
M. Haddou
Quang-Huy Tran
60
0
0
31 Mar 2023
On a continuous time model of gradient descent dynamics and instability
  in deep learning
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
79
10
0
03 Feb 2023
On the Interpretability of Attention Networks
On the Interpretability of Attention Networks
L. N. Pandey
Rahul Vashisht
H. G. Ramaswamy
73
5
0
30 Dec 2022
Adaptive scaling of the learning rate by second order automatic
  differentiation
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
48
2
0
26 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network
  Optimization
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
62
1
0
11 Oct 2022
Invariance Properties of the Natural Gradient in Overparametrised
  Systems
Invariance Properties of the Natural Gradient in Overparametrised Systems
Jesse van Oostrum
J. Müller
Nihat Ay
63
9
0
30 Jun 2022
Information Geometry of Dropout Training
Information Geometry of Dropout Training
Masanari Kimura
H. Hino
44
2
0
22 Jun 2022
A Geometric Understanding of Natural Gradient
A Geometric Understanding of Natural Gradient
Qinxun Bai
S. Rosenberg
Wei Xu
70
2
0
13 Feb 2022
A Mini-Block Fisher Method for Deep Neural Networks
A Mini-Block Fisher Method for Deep Neural Networks
Achraf Bahamou
Shiqian Ma
Yi Ren
ODL
80
9
0
08 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
127
26
0
28 Jan 2022
Efficient Approximations of the Fisher Matrix in Neural Networks using
  Kronecker Product Singular Value Decomposition
Efficient Approximations of the Fisher Matrix in Neural Networks using Kronecker Product Singular Value Decomposition
Abdoulaye Koroko
A. Anciaux-Sedrakian
I. B. Gharbia
Valérie Garès
M. Haddou
Quang-Huy Tran
81
7
0
25 Jan 2022
Gradient representations in ReLU networks as similarity functions
Gradient representations in ReLU networks as similarity functions
Dániel Rácz
Balint Daroczy
FAtt
52
1
0
26 Oct 2021
On the Variance of the Fisher Information for Deep Learning
On the Variance of the Fisher Information for Deep Learning
Alexander Soen
Ke Sun
FedMLFAtt
71
18
0
09 Jul 2021
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural
  Networks
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural Networks
Hidenori Tanaka
D. Kunin
113
31
0
06 May 2021
Wasserstein Proximal of GANs
Wasserstein Proximal of GANs
A. Lin
Wuchen Li
Stanley Osher
Guido Montúfar
GAN
50
47
0
13 Feb 2021
Input Similarity from the Neural Network Perspective
Input Similarity from the Neural Network Perspective
Guillaume Charpiat
N. Girard
Loris Felardos
Y. Tarabalka
95
76
0
10 Feb 2021
AsymptoticNG: A regularized natural gradient optimization algorithm with
  look-ahead strategy
AsymptoticNG: A regularized natural gradient optimization algorithm with look-ahead strategy
Zedong Tang
Fenlong Jiang
Junke Song
Maoguo Gong
Hao Li
F. Yu
Zidong Wang
Min Wang
ODL
27
1
0
24 Dec 2020
Natural-gradient learning for spiking neurons
Natural-gradient learning for spiking neurons
Elena Kreutzer
Walter Senn
Mihai A. Petrovici
38
13
0
23 Nov 2020
Understanding Approximate Fisher Information for Fast Convergence of
  Natural Gradient Descent in Wide Neural Networks
Understanding Approximate Fisher Information for Fast Convergence of Natural Gradient Descent in Wide Neural Networks
Ryo Karakida
Kazuki Osawa
80
26
0
02 Oct 2020
Natural Reweighted Wake-Sleep
Natural Reweighted Wake-Sleep
Csongor-Huba Várady
Riccardo Volpi
Luigi Malagò
Nihat Ay
BDL
99
0
0
15 Aug 2020
On the Locality of the Natural Gradient for Deep Learning
On the Locality of the Natural Gradient for Deep Learning
Nihat Ay
11
0
0
21 May 2020
Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural
  Gradient Descent
Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent
Pu Zhao
Pin-Yu Chen
Siyue Wang
Xinyu Lin
AAML
73
36
0
18 Feb 2020
Tangent Space Separability in Feedforward Neural Networks
Tangent Space Separability in Feedforward Neural Networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
45
3
0
18 Dec 2019
Neural Spectrum Alignment: Empirical Study
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
88
14
0
19 Oct 2019
Pathological spectra of the Fisher information metric and its variants
  in deep neural networks
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
65
28
0
14 Oct 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient
  Descent
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
101
219
0
29 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized
  Neural Networks
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
113
126
0
27 May 2019
The Extended Kalman Filter is a Natural Gradient Descent in Trajectory
  Space
The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space
Yann Ollivier
82
21
0
03 Jan 2019
First-order and second-order variants of the gradient descent in a
  unified framework
First-order and second-order variants of the gradient descent in a unified framework
Thomas Pierrot
Nicolas Perrin
Olivier Sigaud
ODL
69
7
0
18 Oct 2018
A Coordinate-Free Construction of Scalable Natural Gradient
A Coordinate-Free Construction of Scalable Natural Gradient
Kevin Luk
Roger C. Grosse
56
11
0
30 Aug 2018
Fisher Information and Natural Gradient Learning of Random Deep Networks
Fisher Information and Natural Gradient Learning of Random Deep Networks
S. Amari
Ryo Karakida
Masafumi Oizumi
71
36
0
22 Aug 2018
Expressive power of outer product manifolds on feed-forward neural
  networks
Expressive power of outer product manifolds on feed-forward neural networks
Balint Daroczy
Rita Aleksziev
András A. Benczúr
29
0
0
17 Jul 2018
Fast Approximate Natural Gradient Descent in a Kronecker-factored
  Eigenbasis
Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis
Thomas George
César Laurent
Xavier Bouthillier
Nicolas Ballas
Pascal Vincent
ODL
103
156
0
11 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean
  Field Approach
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
193
146
0
04 Jun 2018
Sigsoftmax: Reanalysis of the Softmax Bottleneck
Sigsoftmax: Reanalysis of the Softmax Bottleneck
Sekitoshi Kanai
Yasuhiro Fujiwara
Yuki Yamanaka
S. Adachi
74
70
0
28 May 2018
Block Mean Approximation for Efficient Second Order Optimization
Block Mean Approximation for Efficient Second Order Optimization
Yao Lu
Mehrtash Harandi
Leonid Sigal
Razvan Pascanu
ODL
62
4
0
16 Apr 2018
Accelerating Natural Gradient with Higher-Order Invariance
Accelerating Natural Gradient with Higher-Order Invariance
Yang Song
Jiaming Song
Stefano Ermon
72
23
0
04 Mar 2018
Train Feedfoward Neural Network with Layer-wise Adaptive Rate via
  Approximating Back-matching Propagation
Train Feedfoward Neural Network with Layer-wise Adaptive Rate via Approximating Back-matching Propagation
Huishuai Zhang
Wei-neng Chen
Tie-Yan Liu
27
5
0
27 Feb 2018
Degeneration in VAE: in the Light of Fisher Information Loss
Degeneration in VAE: in the Light of Fisher Information Loss
Huangjie Zheng
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
DRL
78
17
0
19 Feb 2018
12
Next