ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.0617
  4. Cited By
Bayesian Manifold Regression
v1v2 (latest)

Bayesian Manifold Regression

3 May 2013
Yun Yang
David B. Dunson
ArXiv (abs)PDFHTML

Papers citing "Bayesian Manifold Regression"

25 / 25 papers shown
Title
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDLUQCV
108
5
0
04 Mar 2024
Posterior Contraction Rates for Matérn Gaussian Processes on
  Riemannian Manifolds
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
96
8
0
19 Sep 2023
Random Smoothing Regularization in Kernel Gradient Descent Learning
Random Smoothing Regularization in Kernel Gradient Descent Learning
Liang Ding
Tianyang Hu
Jiahan Jiang
Donghao Li
Wei Cao
Yuan Yao
64
6
0
05 May 2023
Pairwise Ranking with Gaussian Kernels
Pairwise Ranking with Gaussian Kernels
Guanhang Lei
Lei Shi
89
2
0
06 Apr 2023
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic
  Metrics
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
Mu Niu
Zhenwen Dai
P. Cheung
Yizhu Wang
65
5
0
16 Jan 2023
Generalized Fiducial Inference on Differentiable Manifolds
Generalized Fiducial Inference on Differentiable Manifolds
Alexander C. Murph
Jan Hannig
Jonathan P. Williams
59
3
0
30 Sep 2022
Optimal recovery and uncertainty quantification for distributed Gaussian
  process regression
Optimal recovery and uncertainty quantification for distributed Gaussian process regression
Amine Hadji
Tammo Hesselink
Botond Szabó
72
3
0
06 May 2022
Estimation of a regression function on a manifold by fully connected
  deep neural networks
Estimation of a regression function on a manifold by fully connected deep neural networks
Michael Kohler
S. Langer
U. Reif
68
5
0
20 Jul 2021
Intrinsic Dimension Adaptive Partitioning for Kernel Methods
Intrinsic Dimension Adaptive Partitioning for Kernel Methods
Thomas Hamm
Ingo Steinwart
28
3
0
16 Jul 2021
Deep Quantile Regression: Mitigating the Curse of Dimensionality Through
  Composition
Deep Quantile Regression: Mitigating the Curse of Dimensionality Through Composition
Guohao Shen
Yuling Jiao
Yuanyuan Lin
J. Horowitz
Jian Huang
260
23
0
10 Jul 2021
Gaussian Process Subspace Regression for Model Reduction
Gaussian Process Subspace Regression for Model Reduction
Ruda Zhang
Simon Mak
David B. Dunson
GP
38
5
0
09 Jul 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic
  Error Bounds with Polynomial Prefactors
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
121
52
0
14 Apr 2021
Airflow recovery from thoracic and abdominal movements using
  Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
Airflow recovery from thoracic and abdominal movements using Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
Whitney K. Huang
Yu-Min Chung
Yu-Bo Wang
J. Mandel
Hau‐Tieng Wu
60
5
0
11 Aug 2020
Statistical Inference in Mean-Field Variational Bayes
Statistical Inference in Mean-Field Variational Bayes
Wei Han
Yun Yang
48
18
0
04 Nov 2019
Deep learning is adaptive to intrinsic dimensionality of model
  smoothness in anisotropic Besov space
Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space
Taiji Suzuki
Atsushi Nitanda
93
63
0
28 Oct 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
71
4
0
14 Oct 2019
Adaptive Approximation and Generalization of Deep Neural Network with
  Intrinsic Dimensionality
Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality
Ryumei Nakada
Masaaki Imaizumi
AI4CE
73
38
0
04 Jul 2019
Diffusion $K$-means clustering on manifolds: provable exact recovery via
  semidefinite relaxations
Diffusion KKK-means clustering on manifolds: provable exact recovery via semidefinite relaxations
Xiaohui Chen
Yun Yang
71
16
0
11 Mar 2019
When Locally Linear Embedding Hits Boundary
When Locally Linear Embedding Hits Boundary
Hau‐Tieng Wu
Nan Wu
65
11
0
11 Nov 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
697
0
03 Jul 2018
Gaussian Process Landmarking on Manifolds
Gaussian Process Landmarking on Manifolds
Tingran Gao
S. Kovalsky
Ingrid Daubechies
127
39
0
09 Feb 2018
Frequentist coverage and sup-norm convergence rate in Gaussian process
  regression
Frequentist coverage and sup-norm convergence rate in Gaussian process regression
Yun Yang
A. Bhattacharya
D. Pati
78
54
0
16 Aug 2017
Probabilistic Integration: A Role in Statistical Computation?
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
161
53
0
03 Dec 2015
Fast Gaussian Process Regression for Big Data
Fast Gaussian Process Regression for Big Data
Sourish Das
Sasanka Roy
R. Sambasivan
GP
95
48
0
17 Sep 2015
Minimax-optimal nonparametric regression in high dimensions
Minimax-optimal nonparametric regression in high dimensions
Yun Yang
S. Tokdar
111
93
0
28 Jan 2014
1