Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1305.0617
Cited By
v1
v2 (latest)
Bayesian Manifold Regression
3 May 2013
Yun Yang
David B. Dunson
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Manifold Regression"
25 / 25 papers shown
Title
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
108
5
0
04 Mar 2024
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
96
8
0
19 Sep 2023
Random Smoothing Regularization in Kernel Gradient Descent Learning
Liang Ding
Tianyang Hu
Jiahan Jiang
Donghao Li
Wei Cao
Yuan Yao
64
6
0
05 May 2023
Pairwise Ranking with Gaussian Kernels
Guanhang Lei
Lei Shi
89
2
0
06 Apr 2023
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
Mu Niu
Zhenwen Dai
P. Cheung
Yizhu Wang
65
5
0
16 Jan 2023
Generalized Fiducial Inference on Differentiable Manifolds
Alexander C. Murph
Jan Hannig
Jonathan P. Williams
59
3
0
30 Sep 2022
Optimal recovery and uncertainty quantification for distributed Gaussian process regression
Amine Hadji
Tammo Hesselink
Botond Szabó
72
3
0
06 May 2022
Estimation of a regression function on a manifold by fully connected deep neural networks
Michael Kohler
S. Langer
U. Reif
68
5
0
20 Jul 2021
Intrinsic Dimension Adaptive Partitioning for Kernel Methods
Thomas Hamm
Ingo Steinwart
28
3
0
16 Jul 2021
Deep Quantile Regression: Mitigating the Curse of Dimensionality Through Composition
Guohao Shen
Yuling Jiao
Yuanyuan Lin
J. Horowitz
Jian Huang
260
23
0
10 Jul 2021
Gaussian Process Subspace Regression for Model Reduction
Ruda Zhang
Simon Mak
David B. Dunson
GP
40
5
0
09 Jul 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
121
52
0
14 Apr 2021
Airflow recovery from thoracic and abdominal movements using Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
Whitney K. Huang
Yu-Min Chung
Yu-Bo Wang
J. Mandel
Hau‐Tieng Wu
60
5
0
11 Aug 2020
Statistical Inference in Mean-Field Variational Bayes
Wei Han
Yun Yang
48
18
0
04 Nov 2019
Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space
Taiji Suzuki
Atsushi Nitanda
93
63
0
28 Oct 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
71
4
0
14 Oct 2019
Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality
Ryumei Nakada
Masaaki Imaizumi
AI4CE
73
38
0
04 Jul 2019
Diffusion
K
K
K
-means clustering on manifolds: provable exact recovery via semidefinite relaxations
Xiaohui Chen
Yun Yang
71
16
0
11 Mar 2019
When Locally Linear Embedding Hits Boundary
Hau‐Tieng Wu
Nan Wu
68
11
0
11 Nov 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
697
0
03 Jul 2018
Gaussian Process Landmarking on Manifolds
Tingran Gao
S. Kovalsky
Ingrid Daubechies
127
39
0
09 Feb 2018
Frequentist coverage and sup-norm convergence rate in Gaussian process regression
Yun Yang
A. Bhattacharya
D. Pati
78
54
0
16 Aug 2017
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
161
53
0
03 Dec 2015
Fast Gaussian Process Regression for Big Data
Sourish Das
Sasanka Roy
R. Sambasivan
GP
95
48
0
17 Sep 2015
Minimax-optimal nonparametric regression in high dimensions
Yun Yang
S. Tokdar
111
93
0
28 Jan 2014
1