Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1305.5029
Cited By
v1
v2 (latest)
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
22 May 2013
Yuchen Zhang
John C. Duchi
Martin J. Wainwright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates"
48 / 148 papers shown
Title
Two-stage Best-scored Random Forest for Large-scale Regression
H. Hang
Yingyi Chen
Johan A. K. Suykens
9
0
0
09 May 2019
Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up
Dominic Richards
Patrick Rebeschini
59
13
0
08 May 2019
Improved Classification Rates for Localized SVMs
Ingrid Blaschzyk
Ingo Steinwart
29
5
0
04 May 2019
A Global Bias-Correction DC Method for Biased Estimation under Memory Constraint
Lu Lin
Feng Li
40
2
0
16 Apr 2019
WONDER: Weighted one-shot distributed ridge regression in high dimensions
Yan Sun
Yueqi Sheng
OffRL
92
51
0
22 Mar 2019
Efficient online learning with kernels for adversarial large scale problems
Rémi Jézéquel
Pierre Gaillard
Alessandro Rudi
77
13
0
26 Feb 2019
KTBoost: Combined Kernel and Tree Boosting
Fabio Sigrist
85
27
0
11 Feb 2019
Distributed sequential method for analyzing massive data
Zhanfeng Wang
Y. Chang
8
0
0
22 Dec 2018
Distributed Inference for Linear Support Vector Machine
Xiaozhou Wang
Zhuoyi Yang
Xi Chen
Weidong Liu
100
65
0
29 Nov 2018
First-order Newton-type Estimator for Distributed Estimation and Inference
Xi Chen
Weidong Liu
Yichen Zhang
97
51
0
28 Nov 2018
Quantile Regression Under Memory Constraint
Xi Chen
Weidong Liu
Yichen Zhang
99
119
0
18 Oct 2018
Distributed linear regression by averaging
Yan Sun
Yueqi Sheng
FedML
94
66
0
30 Sep 2018
Towards A Unified Analysis of Random Fourier Features
Zhu Li
Jean-François Ton
Dino Oglic
Dino Sejdinovic
52
5
0
24 Jun 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
110
156
0
26 Apr 2018
Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces
Junhong Lin
Volkan Cevher
30
9
0
12 Mar 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
160
1,526
0
05 Mar 2018
Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms
Junhong Lin
Volkan Cevher
82
34
0
22 Jan 2018
Randomized incomplete
U
U
U
-statistics in high dimensions
Xiaohui Chen
Kengo Kato
84
42
0
03 Dec 2017
Manifold regularization based on Nystr{ö}m type subsampling
Abhishake Rastogi
Sivananthan Sampath
37
4
0
13 Oct 2017
Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network
Zheng-Chu Guo
Lei Shi
Qiang Wu
39
43
0
07 Aug 2017
Parallel Streaming Wasserstein Barycenters
Matthew Staib
Sebastian Claici
Justin Solomon
Stefanie Jegelka
97
90
0
21 May 2017
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
Yudong Chen
Lili Su
Jiaming Xu
FedML
90
246
0
16 May 2017
Statistical Inference on Panel Data Models: A Kernel Ridge Regression Method
Shunan Zhao
Ruiqi Liu
Zuofeng Shang
27
11
0
08 Mar 2017
Preserving Differential Privacy Between Features in Distributed Estimation
C. Heinze-Deml
Brian McWilliams
N. Meinshausen
80
7
0
01 Mar 2017
Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging
Shusen Wang
Alex Gittens
Michael W. Mahoney
82
84
0
16 Feb 2017
Distributed inference for quantile regression processes
S. Volgushev
Shih-Kang Chao
Guang Cheng
546
131
0
21 Jan 2017
Spatial Decompositions for Large Scale SVMs
P. Thomann
Ingrid Blaschzyk
Mona Meister
Ingo Steinwart
43
21
0
01 Dec 2016
Minimax Error of Interpolation and Optimal Design of Experiments for Variable Fidelity Data
Alexey Zaytsev
Evgeny Burnaev
67
2
0
21 Oct 2016
Communication-efficient Distributed Sparse Linear Discriminant Analysis
Lu Tian
Quanquan Gu
69
23
0
15 Oct 2016
Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification
Prateek Jain
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
Aaron Sidford
MoMe
101
36
0
12 Oct 2016
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
171
191
0
11 Aug 2016
Efficient Distributed Learning with Sparsity
Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
FedML
90
152
0
25 May 2016
Constructive neural network learning
Shaobo Lin
Jinshan Zeng
Xiaoqin Zhang
72
31
0
30 Apr 2016
Greedy Criterion in Orthogonal Greedy Learning
Lin Xu
Shaobo Lin
Jinshan Zeng
Xia Liu
Zongben Xu
25
10
0
20 Apr 2016
Divide and Conquer Local Average Regression
Xiangyu Chang
Shaobo Lin
Yao Wang
MoMe
57
37
0
23 Jan 2016
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
183
70
0
31 Dec 2015
Computational Limits of A Distributed Algorithm For Smoothing Spline
Zuofeng Shang
Guang Cheng
261
56
0
31 Dec 2015
Distributed Estimation and Inference with Statistical Guarantees
Heather Battey
Jianqing Fan
Han Liu
Junwei Lu
Ziwei Zhu
88
83
0
17 Sep 2015
Nonparametric Bayesian Aggregation for Massive Data
Zuofeng Shang
Botao Hao
Guang Cheng
22
8
0
17 Aug 2015
Optimal Learning Rates for Localized SVMs
Mona Meister
Ingo Steinwart
64
55
0
23 Jul 2015
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
134
37
0
08 Jun 2015
On the Feasibility of Distributed Kernel Regression for Big Data
Chen Xu
Yongquan Zhang
Runze Li
41
30
0
05 May 2015
GP-select: Accelerating EM using adaptive subspace preselection
Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Jörg Lücke
Arthur Gretton
67
18
0
10 Dec 2014
Greedy metrics in orthogonal greedy learning
Lin Xu
Shaobo Lin
Jinshan Zeng
Zongben Xu
46
3
0
13 Nov 2014
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
114
140
0
08 Nov 2014
LOCO: Distributing Ridge Regression with Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
Gabriel Krummenacher
132
34
0
13 Jun 2014
Loss minimization and parameter estimation with heavy tails
Daniel J. Hsu
Sivan Sabato
202
188
0
07 Jul 2013
Randomized maximum-contrast selection: subagging for large-scale regression
Jelena Bradic
70
13
0
14 Jun 2013
Previous
1
2
3