Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1305.5029
Cited By
v1
v2 (latest)
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
22 May 2013
Yuchen Zhang
John C. Duchi
Martin J. Wainwright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates"
50 / 148 papers shown
Title
From inexact optimization to learning via gradient concentration
Bernhard Stankewitz
Nicole Mücke
Lorenzo Rosasco
88
5
0
09 Jun 2021
Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory
Ruiqi Liu
Ganggang Xu
Zuofeng Shang
42
0
0
20 May 2021
Achieving Fairness with a Simple Ridge Penalty
M. Scutari
F. Panero
M. Proissl
FaML
87
14
0
18 May 2021
An Accurate and Efficient Large-scale Regression Method through Best Friend Clustering
Kun Li
Liang Yuan
Yunquan Zhang
Gongwei Chen
53
0
0
22 Apr 2021
Randomization-based Machine Learning in Renewable Energy Prediction Problems: Critical Literature Review, New Results and Perspectives
Javier Del Ser
D. Casillas-Pérez
L. Cornejo-Bueno
Luis Prieto-Godino
J. Sanz-Justo
C. Casanova-Mateo
S. Salcedo-Sanz
AI4CE
70
43
0
26 Mar 2021
Semiparametric Bayesian Inference for Local Extrema of Functions in the Presence of Noise
Meng Li
Zejian Liu
Cheng-han Yu
M. Vannucci
56
3
0
19 Mar 2021
Variance Reduced Median-of-Means Estimator for Byzantine-Robust Distributed Inference
Jiyuan Tu
Weidong Liu
Xiaojun Mao
Xi Chen
51
20
0
04 Mar 2021
Communication-efficient Byzantine-robust distributed learning with statistical guarantee
Xingcai Zhou
Le Chang
Pengfei Xu
Shaogao Lv
FedML
33
0
0
28 Feb 2021
Divide-and-conquer methods for big data analysis
Xueying Chen
Jerry Q. Cheng
Min‐ge Xie
44
9
0
22 Feb 2021
Total Stability of SVMs and Localized SVMs
H. Köhler
A. Christmann
36
4
0
29 Jan 2021
Equivalence of Convergence Rates of Posterior Distributions and Bayes Estimators for Functions and Nonparametric Functionals
Zejian Liu
Meng Li
44
2
0
27 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
97
18
0
09 Nov 2020
A Computationally Efficient Classification Algorithm in Posterior Drift Model: Phase Transition and Minimax Adaptivity
Ruiqi Liu
Kexuan Li
Zuofeng Shang
33
4
0
09 Nov 2020
Distributed Learning of Finite Gaussian Mixtures
Qiong Zhang
Jiahua Chen
104
8
0
20 Oct 2020
Generalized Leverage Score Sampling for Neural Networks
Jason D. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
71
43
0
21 Sep 2020
Kernel-based L_2-Boosting with Structure Constraints
Yao Wang
Xin Guo
Shao-Bo Lin
8
0
0
16 Sep 2020
Distributed ARIMA Models for Ultra-long Time Series
Xiaoqian Wang
Yanfei Kang
Rob J. Hyndman
Feng Li
AI4TS
118
53
0
19 Jul 2020
Doubly Distributed Supervised Learning and Inference with High-Dimensional Correlated Outcomes
Emily C. Hector
P. Song
FedML
98
15
0
16 Jul 2020
Decentralised Learning with Random Features and Distributed Gradient Descent
Dominic Richards
Patrick Rebeschini
Lorenzo Rosasco
63
18
0
01 Jul 2020
Optimal Rates of Distributed Regression with Imperfect Kernels
Hongwei Sun
Qiang Wu
25
15
0
30 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
96
116
0
18 Jun 2020
Revisiting minimum description length complexity in overparameterized models
Raaz Dwivedi
Chandan Singh
Bin Yu
Martin J. Wainwright
57
5
0
17 Jun 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
80
68
0
17 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
102
180
0
16 Jun 2020
Sample complexity and effective dimension for regression on manifolds
Andrew D. McRae
Justin Romberg
Mark A. Davenport
106
8
0
13 Jun 2020
On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
Zejian Liu
Meng Li
61
8
0
02 Jun 2020
Distributed Bayesian Varying Coefficient Modeling Using a Gaussian Process Prior
Rajarshi Guhaniyogi
Cheng Li
T. Savitsky
Sanvesh Srivastava
47
21
0
01 Jun 2020
Meta Clustering for Collaborative Learning
Chenglong Ye
R. Ghanadan
Jie Ding
111
4
0
29 May 2020
Distributed Estimation for Principal Component Analysis: an Enlarged Eigenspace Analysis
Xi Chen
Jason D. Lee
He Li
Yun Yang
79
6
0
05 Apr 2020
Distributed Kernel Ridge Regression with Communications
Shao-Bo Lin
Di Wang
Ding-Xuan Zhou
41
34
0
27 Mar 2020
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
Michael Kapralov
Navid Nouri
Ilya P. Razenshteyn
A. Velingker
A. Zandieh
83
13
0
21 Mar 2020
Theoretical Analysis of Divide-and-Conquer ERM: Beyond Square Loss and RKHS
Yong Liu
Lizhong Ding
Weiping Wang
27
0
0
09 Mar 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
186
153
0
02 Mar 2020
Federated Learning for Resource-Constrained IoT Devices: Panoramas and State-of-the-art
Ahmed Imteaj
Urmish Thakker
Shiqiang Wang
Jian Li
M. Amini
80
62
0
25 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
87
172
0
21 Feb 2020
Distributed Learning with Dependent Samples
Zirui Sun
Shao-Bo Lin
53
7
0
10 Feb 2020
Adaptive Stopping Rule for Kernel-based Gradient Descent Algorithms
Xiangyu Chang
Shao-Bo Lin
46
0
0
09 Jan 2020
Histogram Transform Ensembles for Large-scale Regression
H. Hang
Zhouchen Lin
Xiaoyu Liu
Hongwei Wen
16
2
0
08 Dec 2019
Fast Polynomial Kernel Classification for Massive Data
Jinshan Zeng
Minrun Wu
Shao-Bo Lin
Ding-Xuan Zhou
TPM
67
5
0
24 Nov 2019
D
C
2
DC^2
D
C
2
: A Divide-and-conquer Algorithm for Large-scale Kernel Learning with Application to Clustering
Ke Alexander Wang
Xinran Bian
Pan Liu
Donghui Yan
120
4
0
16 Nov 2019
Distributed Networked Learning with Correlated Data
Lingzhou Hong
Alfredo García
Ceyhun Eksin
FedML
39
1
0
28 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
97
53
0
21 Oct 2019
Stacked Autoencoder Based Deep Random Vector Functional Link Neural Network for Classification
Rakesh Katuwal
Ponnuthurai Nagaratnam Suganthan
58
98
0
04 Oct 2019
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature Mapping
Shusen Wang
77
2
0
24 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
170
4,568
0
21 Aug 2019
Learning over inherently distributed data
Donghui Yan
Ying Xu
FedML
125
2
0
30 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
220
2,363
0
04 Jul 2019
Random Vector Functional Link Neural Network based Ensemble Deep Learning
Rakesh Katuwal
Ponnuthurai Nagaratnam Suganthan
M. Tanveer
51
160
0
30 Jun 2019
Communication-Efficient Accurate Statistical Estimation
Jianqing Fan
Yongyi Guo
Kaizheng Wang
61
114
0
12 Jun 2019
Towards Sharp Analysis for Distributed Learning with Random Features
Jian Li
Yong Liu
Weiping Wang
62
3
0
07 Jun 2019
Previous
1
2
3
Next