ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.0543
  4. Cited By
Predicting Parameters in Deep Learning

Predicting Parameters in Deep Learning

3 June 2013
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
    OOD
ArXivPDFHTML

Papers citing "Predicting Parameters in Deep Learning"

50 / 200 papers shown
Title
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu
G. Varma
A. Namboodiri
GNN
30
70
0
23 Nov 2017
NISP: Pruning Networks using Neuron Importance Score Propagation
NISP: Pruning Networks using Neuron Importance Score Propagation
Ruichi Yu
Ang Li
Chun-Fu Chen
Jui-Hsin Lai
Vlad I. Morariu
Xintong Han
M. Gao
Ching-Yung Lin
L. Davis
44
795
0
16 Nov 2017
Moonshine: Distilling with Cheap Convolutions
Moonshine: Distilling with Cheap Convolutions
Elliot J. Crowley
Gavia Gray
Amos Storkey
27
120
0
07 Nov 2017
Accelerating Training of Deep Neural Networks via Sparse Edge Processing
Accelerating Training of Deep Neural Networks via Sparse Edge Processing
Sourya Dey
Yinan Shao
K. Chugg
P. Beerel
30
16
0
03 Nov 2017
Knowledge Projection for Deep Neural Networks
Knowledge Projection for Deep Neural Networks
Zhi Zhang
G. Ning
Zhihai He
38
15
0
26 Oct 2017
Trace norm regularization and faster inference for embedded speech
  recognition RNNs
Trace norm regularization and faster inference for embedded speech recognition RNNs
Markus Kliegl
Siddharth Goyal
Kexin Zhao
Kavya Srinet
M. Shoeybi
26
8
0
25 Oct 2017
Learning Intrinsic Sparse Structures within Long Short-Term Memory
Learning Intrinsic Sparse Structures within Long Short-Term Memory
W. Wen
Yuxiong He
Samyam Rajbhandari
Minjia Zhang
Wenhan Wang
Fang Liu
Bin Hu
Yiran Chen
H. Li
MQ
35
140
0
15 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
Neuron Pruning for Compressing Deep Networks using Maxout Architectures
Neuron Pruning for Compressing Deep Networks using Maxout Architectures
Fernando Moya Rueda
René Grzeszick
G. Fink
CVBM
22
17
0
21 Jul 2017
Network Sketching: Exploiting Binary Structure in Deep CNNs
Network Sketching: Exploiting Binary Structure in Deep CNNs
Yiwen Guo
Anbang Yao
Hao Zhao
Yurong Chen
MQ
31
95
0
07 Jun 2017
IDK Cascades: Fast Deep Learning by Learning not to Overthink
IDK Cascades: Fast Deep Learning by Learning not to Overthink
Xin Wang
Yujia Luo
D. Crankshaw
Alexey Tumanov
Fisher Yu
Joseph E. Gonzalez
25
107
0
03 Jun 2017
Kronecker Recurrent Units
Kronecker Recurrent Units
C. Jose
Moustapha Cissé
F. Fleuret
ODL
24
45
0
29 May 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
23
479
0
24 May 2017
Compressing Recurrent Neural Network with Tensor Train
Compressing Recurrent Neural Network with Tensor Train
Andros Tjandra
S. Sakti
Satoshi Nakamura
21
109
0
23 May 2017
Towards thinner convolutional neural networks through Gradually Global
  Pruning
Towards thinner convolutional neural networks through Gradually Global Pruning
Z. Wang
Ce Zhu
Zhiqiang Xia
Qi Guo
Yipeng Liu
CVBM
14
4
0
29 Mar 2017
Deep Learning with Low Precision by Half-wave Gaussian Quantization
Deep Learning with Low Precision by Half-wave Gaussian Quantization
Zhaowei Cai
Xiaodong He
Jian Sun
Nuno Vasconcelos
MQ
36
502
0
03 Feb 2017
Towards the Limit of Network Quantization
Towards the Limit of Network Quantization
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
MQ
22
191
0
05 Dec 2016
In Teacher We Trust: Learning Compressed Models for Pedestrian Detection
In Teacher We Trust: Learning Compressed Models for Pedestrian Detection
Jonathan Shen
Noranart Vesdapunt
Vishnu Naresh Boddeti
Kris M. Kitani
13
29
0
01 Dec 2016
Diet Networks: Thin Parameters for Fat Genomics
Diet Networks: Thin Parameters for Fat Genomics
Adriana Romero
P. Carrier
Akram Erraqabi
Tristan Sylvain
Alex Auvolat
Etienne Dejoie
Marc-André Legault
M. Dubé
J. Hussin
Yoshua Bengio
12
68
0
28 Nov 2016
Training Sparse Neural Networks
Training Sparse Neural Networks
Suraj Srinivas
Akshayvarun Subramanya
R. Venkatesh Babu
11
204
0
21 Nov 2016
LCNN: Lookup-based Convolutional Neural Network
LCNN: Lookup-based Convolutional Neural Network
Hessam Bagherinezhad
Mohammad Rastegari
Ali Farhadi
13
89
0
20 Nov 2016
Learning the Number of Neurons in Deep Networks
Learning the Number of Neurons in Deep Networks
J. Álvarez
Mathieu Salzmann
21
412
0
19 Nov 2016
Ultimate tensorization: compressing convolutional and FC layers alike
Ultimate tensorization: compressing convolutional and FC layers alike
T. Garipov
D. Podoprikhin
Alexander Novikov
Dmitry Vetrov
39
190
0
10 Nov 2016
Deep Model Compression: Distilling Knowledge from Noisy Teachers
Deep Model Compression: Distilling Knowledge from Noisy Teachers
Bharat Bhusan Sau
V. Balasubramanian
18
181
0
30 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
54
4,590
0
18 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
142
0
14 Oct 2016
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
84
1,585
0
27 Sep 2016
Local Binary Convolutional Neural Networks
Local Binary Convolutional Neural Networks
Felix Juefei Xu
Vishnu Naresh Boddeti
Marios Savvides
MQ
27
251
0
22 Aug 2016
Learning Structured Sparsity in Deep Neural Networks
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
26
2,320
0
12 Aug 2016
Group Sparse Regularization for Deep Neural Networks
Group Sparse Regularization for Deep Neural Networks
Simone Scardapane
Danilo Comminiello
Amir Hussain
A. Uncini
22
462
0
02 Jul 2016
Sequence-Level Knowledge Distillation
Sequence-Level Knowledge Distillation
Yoon Kim
Alexander M. Rush
29
1,098
0
25 Jun 2016
Learning feed-forward one-shot learners
Learning feed-forward one-shot learners
Luca Bertinetto
João F. Henriques
Jack Valmadre
Philip Torr
Andrea Vedaldi
18
469
0
16 Jun 2016
Refining Architectures of Deep Convolutional Neural Networks
Refining Architectures of Deep Convolutional Neural Networks
S. Shankar
D. Robertson
Yani Andrew Ioannou
A. Criminisi
R. Cipolla
3DV
17
30
0
22 Apr 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
  Networks
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
54
4,331
0
16 Mar 2016
Decision Forests, Convolutional Networks and the Models in-Between
Decision Forests, Convolutional Networks and the Models in-Between
Yani Andrew Ioannou
D. Robertson
Darko Zikic
Peter Kontschieder
Jamie Shotton
Matthew Brown
A. Criminisi
18
88
0
03 Mar 2016
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
Suraj Srinivas
Ravi Kiran Sarvadevabhatla
Konda Reddy Mopuri
N. Prabhu
S. Kruthiventi
R. Venkatesh Babu
OOD
35
215
0
25 Jan 2016
Exploiting Local Structures with the Kronecker Layer in Convolutional
  Networks
Exploiting Local Structures with the Kronecker Layer in Convolutional Networks
Shuchang Zhou
Jia-Nan Wu
Yuxin Wu
Xinyu Zhou
11
40
0
31 Dec 2015
On the energy landscape of deep networks
On the energy landscape of deep networks
Pratik Chaudhari
Stefano Soatto
ODL
40
27
0
20 Nov 2015
ACDC: A Structured Efficient Linear Layer
ACDC: A Structured Efficient Linear Layer
Marcin Moczulski
Misha Denil
J. Appleyard
Nando de Freitas
30
98
0
18 Nov 2015
Image Question Answering using Convolutional Neural Network with Dynamic
  Parameter Prediction
Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction
Hyeonwoo Noh
Paul Hongsuck Seo
Bohyung Han
OOD
22
327
0
18 Nov 2015
Diversity Networks: Neural Network Compression Using Determinantal Point
  Processes
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
Zelda E. Mariet
S. Sra
11
129
0
16 Nov 2015
Structured Transforms for Small-Footprint Deep Learning
Structured Transforms for Small-Footprint Deep Learning
Vikas Sindhwani
Tara N. Sainath
Sanjiv Kumar
23
240
0
06 Oct 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
45
8,732
0
01 Oct 2015
Compression of Fully-Connected Layer in Neural Network by Kronecker
  Product
Compression of Fully-Connected Layer in Neural Network by Kronecker Product
Shuchang Zhou
Jia-Nan Wu
33
26
0
21 Jul 2015
Compressing Convolutional Neural Networks
Compressing Convolutional Neural Networks
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
24
139
0
14 Jun 2015
Compressing Neural Networks with the Hashing Trick
Compressing Neural Networks with the Hashing Trick
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
18
1,190
0
19 Apr 2015
Neural Network Regularization via Robust Weight Factorization
Neural Network Regularization via Robust Weight Factorization
Jan Rudy
Weiguang Ding
Daniel Jiwoong Im
Graham W. Taylor
OOD
42
6
0
20 Dec 2014
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
36
43,402
0
17 Sep 2014
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
Previous
1234