ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.0735
  4. Cited By
Particle approximations of the score and observed information matrix for
  parameter estimation in state space models with linear computational cost
v1v2v3 (latest)

Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost

4 June 2013
Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
ArXiv (abs)PDFHTML

Papers citing "Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost"

14 / 14 papers shown
Title
Recursive variational Gaussian approximation with the Whittle likelihood
  for linear non-Gaussian state space models
Recursive variational Gaussian approximation with the Whittle likelihood for linear non-Gaussian state space models
Bao Anh Vu
David Gunawan
Andrew Zammit-Mangion
66
1
0
23 Jun 2024
R-VGAL: A Sequential Variational Bayes Algorithm for Generalised Linear
  Mixed Models
R-VGAL: A Sequential Variational Bayes Algorithm for Generalised Linear Mixed Models
Bao Anh Vu
David Gunawan
A. Zammit‐Mangion
DRL
55
1
0
01 Jun 2023
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
50
11
0
26 Oct 2022
Efficient Learning of the Parameters of Non-Linear Models using
  Differentiable Resampling in Particle Filters
Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters
Conor Rosato
Vincent Beraud
P. Horridge
Thomas B. Schon
Simon Maskell
82
14
0
02 Nov 2021
Augmented pseudo-marginal Metropolis-Hastings for partially observed
  diffusion processes
Augmented pseudo-marginal Metropolis-Hastings for partially observed diffusion processes
Andrew Golightly
Chris Sherlock
65
3
0
11 Sep 2020
Stochastic Gradient MCMC for Nonlinear State Space Models
Stochastic Gradient MCMC for Nonlinear State Space Models
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
E. Fox
BDL
66
8
0
29 Jan 2019
Regularized Zero-Variance Control Variates
Regularized Zero-Variance Control Variates
Leah F. South
Chris J. Oates
Antonietta Mira
Christopher C. Drovandi
BDL
133
19
0
13 Nov 2018
Simulation-based inference methods for partially observed Markov model
  via the R package is2
Simulation-based inference methods for partially observed Markov model via the R package is2
Bernhard Bergmair
Johann Hoffelner
Siegfried Silber
122
0
0
07 Nov 2018
Particle Filters and Data Assimilation
Particle Filters and Data Assimilation
Paul Fearnhead
H. Kunsch
83
82
0
13 Sep 2017
A Common Derivation for Markov Chain Monte Carlo Algorithms with
  Tractable and Intractable Targets
A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and Intractable Targets
K. Tran
BDL
71
2
0
07 Jul 2016
On Particle Methods for Parameter Estimation in State-Space Models
On Particle Methods for Parameter Estimation in State-Space Models
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
128
436
0
30 Dec 2014
Particle Metropolis-adjusted Langevin algorithms
Particle Metropolis-adjusted Langevin algorithms
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
127
24
0
23 Dec 2014
Particle Metropolis adjusted Langevin algorithms for state space models
Christopher Nemeth
Paul Fearnhead
126
19
0
04 Feb 2014
Particle Metropolis-Hastings using gradient and Hessian information
Particle Metropolis-Hastings using gradient and Hessian information
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
166
47
0
04 Nov 2013
1