ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.3171
  4. Cited By
Confidence Intervals and Hypothesis Testing for High-Dimensional
  Regression
v1v2 (latest)

Confidence Intervals and Hypothesis Testing for High-Dimensional Regression

Journal of machine learning research (JMLR), 2013
13 June 2013
Adel Javanmard
Andrea Montanari
ArXiv (abs)PDFHTML

Papers citing "Confidence Intervals and Hypothesis Testing for High-Dimensional Regression"

50 / 300 papers shown
Title
Uniformly Valid Confidence Sets Based on the Lasso
Uniformly Valid Confidence Sets Based on the Lasso
K. Ewald
U. Schneider
229
11
0
19 Jul 2015
Recursive Sparse Point Process Regression with Application to
  Spectrotemporal Receptive Field Plasticity Analysis
Recursive Sparse Point Process Regression with Application to Spectrotemporal Receptive Field Plasticity AnalysisIEEE Transactions on Signal Processing (IEEE TSP), 2015
Alireza Sheikhattar
J. Fritz
S. Shamma
B. Babadi
138
26
0
16 Jul 2015
Honest confidence regions and optimality in high-dimensional precision
  matrix estimation
Honest confidence regions and optimality in high-dimensional precision matrix estimationTest (Madrid) (TM), 2015
Jana Janková
Sara van de Geer
307
78
0
08 Jul 2015
Uncertainty Quantification Under Group Sparsity
Uncertainty Quantification Under Group Sparsity
Qing Zhou
Seunghyun Min
207
3
0
05 Jul 2015
Confidence Intervals for High-Dimensional Linear Regression: Minimax
  Rates and Adaptivity
Confidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity
T. Tony Cai
Zijian Guo
342
189
0
18 Jun 2015
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression
Fast sampling with Gaussian scale-mixture priors in high-dimensional regression
A. Bhattacharya
Antik Chakraborty
Bani Mallick
289
193
0
15 Jun 2015
Inference of high-dimensional linear models with time-varying
  coefficients
Inference of high-dimensional linear models with time-varying coefficients
Xiaohui Chen
Yifeng He
264
9
0
12 Jun 2015
Inferring Graphs from Cascades: A Sparse Recovery Framework
Inferring Graphs from Cascades: A Sparse Recovery FrameworkInternational Conference on Machine Learning (ICML), 2015
Jean Pouget-Abadie
Thibaut Horel
179
53
0
21 May 2015
Uncertainty Quantification for Matrix Compressed Sensing and Quantum
  Tomography Problems
Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography ProblemsProgress in probability (PP), 2015
Alexandra Carpentier
Jens Eisert
David Gross
Richard Nickl
219
20
0
13 Apr 2015
Inference in Additively Separable Models With a High-Dimensional Set of
  Conditioning Variables
Inference in Additively Separable Models With a High-Dimensional Set of Conditioning Variables
Damian Kozbur
CML
381
12
0
18 Mar 2015
Communication-efficient sparse regression: a one-shot approach
Communication-efficient sparse regression: a one-shot approach
Jason D. Lee
Yuekai Sun
Qiang Liu
Jonathan E. Taylor
301
67
0
14 Mar 2015
Kernel Meets Sieve: Post-Regularization Confidence Bands for Sparse
  Additive Model
Kernel Meets Sieve: Post-Regularization Confidence Bands for Sparse Additive Model
Junwei Lu
Mladen Kolar
Han Liu
255
23
0
10 Mar 2015
ROCKET: Robust Confidence Intervals via Kendall's Tau for
  Transelliptical Graphical Models
ROCKET: Robust Confidence Intervals via Kendall's Tau for Transelliptical Graphical Models
Rina Foygel Barber
Mladen Kolar
242
47
0
26 Feb 2015
Prediction error of cross-validated Lasso
Prediction error of cross-validated Lasso
S. Chatterjee
Jafar Jafarov
329
44
0
23 Feb 2015
An iterative hard thresholding estimator for low rank matrix recovery
  with explicit limiting distribution
An iterative hard thresholding estimator for low rank matrix recovery with explicit limiting distribution
Alexandra Carpentier
Arlene K. H. Kim
277
17
0
16 Feb 2015
A sequential rejection testing method for high-dimensional regression
  with correlated variables
A sequential rejection testing method for high-dimensional regression with correlated variables
Jacopo Mandozzi
Peter Buhlmann
234
10
0
11 Feb 2015
Local and Global Inference for High Dimensional Nonparanormal Graphical
  Models
Local and Global Inference for High Dimensional Nonparanormal Graphical Models
Quanquan Gu
Yuanbin Cao
Y. Ning
Han Liu
212
20
0
09 Feb 2015
High-Dimensional Longitudinal Classification with the Multinomial Fused
  Lasso
High-Dimensional Longitudinal Classification with the Multinomial Fused Lasso
S. Adhikari
F. Lecci
J. Becker
B. Junker
L. Kuller
O. Lopez
Robert Tibshirani
140
13
0
29 Jan 2015
Valid Post-Selection and Post-Regularization Inference: An Elementary,
  General Approach
Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach
Victor Chernozhukov
Christian B. Hansen
Martin Spindler
500
187
0
14 Jan 2015
Uniform Inference in High-dimensional Dynamic Panel Data Models
Uniform Inference in High-dimensional Dynamic Panel Data Models
Anders Bredahl Kock
Haihan Tang
335
29
0
02 Jan 2015
A General Theory of Hypothesis Tests and Confidence Regions for Sparse
  High Dimensional Models
A General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models
Y. Ning
Han Liu
722
334
0
30 Dec 2014
High Dimensional Expectation-Maximization Algorithm: Statistical
  Optimization and Asymptotic Normality
High Dimensional Expectation-Maximization Algorithm: Statistical Optimization and Asymptotic Normality
Zhaoran Wang
Quanquan Gu
Y. Ning
Han Liu
305
55
0
30 Dec 2014
A General Framework for Robust Testing and Confidence Regions in
  High-Dimensional Quantile Regression
A General Framework for Robust Testing and Confidence Regions in High-Dimensional Quantile Regression
Tianqi Zhao
Mladen Kolar
Han Liu
218
45
0
30 Dec 2014
On Semiparametric Exponential Family Graphical Models
On Semiparametric Exponential Family Graphical ModelsJournal of machine learning research (JMLR), 2014
Zhuoran Yang
Y. Ning
Han Liu
262
33
0
30 Dec 2014
Inference for Sparse Conditional Precision Matrices
Inference for Sparse Conditional Precision Matrices
Jialei Wang
Mladen Kolar
213
23
0
24 Dec 2014
The Benefit of Group Sparsity in Group Inference with De-biased Scaled
  Group Lasso
The Benefit of Group Sparsity in Group Inference with De-biased Scaled Group Lasso
Ritwik Mitra
Cun-Hui Zhang
394
47
0
13 Dec 2014
A Likelihood Ratio Framework for High Dimensional Semiparametric
  Regression
A Likelihood Ratio Framework for High Dimensional Semiparametric Regression
Y. Ning
Tianqi Zhao
Han Liu
306
36
0
06 Dec 2014
High-Dimensional Semiparametric Selection Models: Estimation Theory with
  an Application to the Retail Gasoline Market
High-Dimensional Semiparametric Selection Models: Estimation Theory with an Application to the Retail Gasoline Market
Ying Zhu
752
1
0
04 Nov 2014
Asymptotically Honest Confidence Regions for High Dimensional Parameters
  by the Desparsified Conservative Lasso
Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso
Mehmet Caner
Anders Bredahl Kock
383
70
0
15 Oct 2014
Minimax Estimation of Functionals of Discrete Distributions
Minimax Estimation of Functionals of Discrete DistributionsIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2014
Jiantao Jiao
K. Venkat
Yanjun Han
Tsachy Weissman
519
261
0
26 Jun 2014
Rejoinder: "A significance test for the lasso"
Rejoinder: "A significance test for the lasso"
R. Lockhart
Jonathan E. Taylor
Robert Tibshirani
Robert Tibshirani
150
9
0
27 May 2014
Discussion: "A significance test for the lasso"
Discussion: "A significance test for the lasso"
Peter Buhlmann
L. Meier
Sara van de Geer
131
3
0
27 May 2014
On the Theoretical Guarantees for Parameter Estimation of Gaussian
  Random Field Models: A Sparse Precision Matrix Approach
On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
S. Tajbakhsh
N. Aybat
E. Castillo
235
10
0
21 May 2014
Controlling the false discovery rate via knockoffs
Controlling the false discovery rate via knockoffs
Rina Foygel Barber
Emmanuel J. Candès
526
808
0
22 Apr 2014
Geometric Inference for General High-Dimensional Linear Inverse Problems
Geometric Inference for General High-Dimensional Linear Inverse Problems
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
266
28
0
17 Apr 2014
High-dimensional genome-wide association study and misspecified mixed
  model analysis
High-dimensional genome-wide association study and misspecified mixed model analysis
Jiming Jiang
Cong Li
D. Paul
Can Yang
Hongyu Zhao
134
8
0
09 Apr 2014
Worst possible sub-directions in high-dimensional models
Worst possible sub-directions in high-dimensional modelsJournal of Multivariate Analysis (JMA), 2014
Sara van de Geer
283
11
0
27 Mar 2014
Confidence intervals for high-dimensional inverse covariance estimation
Confidence intervals for high-dimensional inverse covariance estimation
Jana Janková
Sara van de Geer
463
194
0
26 Mar 2014
Exact Post Model Selection Inference for Marginal Screening
Exact Post Model Selection Inference for Marginal ScreeningNeural Information Processing Systems (NeurIPS), 2014
Jason D. Lee
Jonathan E. Taylor
295
105
0
23 Feb 2014
Monte Carlo Simulation for Lasso-Type Problems by Estimator Augmentation
Monte Carlo Simulation for Lasso-Type Problems by Estimator Augmentation
Qing Zhou
316
16
0
17 Jan 2014
Inference in High Dimensions with the Penalized Score Test
Inference in High Dimensions with the Penalized Score Test
Arend Voorman
Ali Shojaie
Daniela Witten
327
35
0
12 Jan 2014
Hierarchical Testing in the High-Dimensional Setting with Correlated
  Variables
Hierarchical Testing in the High-Dimensional Setting with Correlated Variables
Jacopo Mandozzi
Peter Buhlmann
284
38
0
19 Dec 2013
Exact post-selection inference, with application to the lasso
Exact post-selection inference, with application to the lasso
Jason D. Lee
Dennis L. Sun
Yuekai Sun
Jonathan E. Taylor
635
772
0
25 Nov 2013
Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional
  Regression
Nearly Optimal Sample Size in Hypothesis Testing for High-Dimensional RegressionAllerton Conference on Communication, Control, and Computing (Allerton), 2013
Adel Javanmard
Andrea Montanari
233
27
0
01 Nov 2013
A Global Homogeneity Test for High-Dimensional Linear Regression
A Global Homogeneity Test for High-Dimensional Linear Regression
Camille Charbonnier
Nicolas Verzélen
Fanny Villers
368
4
0
16 Aug 2013
On asymptotically optimal confidence regions and tests for
  high-dimensional models
On asymptotically optimal confidence regions and tests for high-dimensional models
Sara van de Geer
Peter Buhlmann
Yaácov Ritov
Ruben Dezeure
635
1,196
0
03 Mar 2013
A significance test for the lasso
A significance test for the lassoAnnals of Statistics (AoS), 2013
R. Lockhart
Jonathan E. Taylor
Robert Tibshirani
Robert Tibshirani
454
675
0
30 Jan 2013
Hypothesis Testing in High-Dimensional Regression under the Gaussian
  Random Design Model: Asymptotic Theory
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic TheoryIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2013
Adel Javanmard
Andrea Montanari
484
165
0
17 Jan 2013
Confidence sets in sparse regression
Confidence sets in sparse regression
Richard Nickl
Sara van de Geer
381
112
0
07 Sep 2012
Finite sample posterior concentration in high-dimensional regression
Finite sample posterior concentration in high-dimensional regression
Nate Strawn
Artin Armagan
Rayan Saab
Lawrence Carin
David B. Dunson
271
5
0
20 Jul 2012
Previous
123456