Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1307.1493
Cited By
Dropout Training as Adaptive Regularization
4 July 2013
Stefan Wager
Sida I. Wang
Percy Liang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dropout Training as Adaptive Regularization"
50 / 87 papers shown
Title
Analytic theory of dropout regularization
Francesco Mori
Francesca Mignacco
34
0
0
12 May 2025
Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Yupei Li
M. Milling
Björn Schuller
AI4CE
107
0
0
27 Mar 2025
Random Forest Autoencoders for Guided Representation Learning
Adrien Aumon
Shuang Ni
Myriam Lizotte
Guy Wolf
Kevin R. Moon
Jake S. Rhodes
67
0
0
18 Feb 2025
Beyond Self-Consistency: Loss-Balanced Perturbation-Based Regularization Improves Industrial-Scale Ads Ranking
Ilqar Ramazanli
Hamid Eghbalzadeh
Xiaoyi Liu
Yang Wang
Jiaxiang Fu
Kaushik Rangadurai
Sem Park
Bo Long
Xue Feng
51
0
0
05 Feb 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Flat Minima in Linear Estimation and an Extended Gauss Markov Theorem
Simon Segert
32
0
0
18 Nov 2023
On The Impact of Machine Learning Randomness on Group Fairness
Prakhar Ganesh
Hong Chang
Martin Strobel
Reza Shokri
FaML
36
30
0
09 Jul 2023
Generalized equivalences between subsampling and ridge regularization
Pratik V. Patil
Jin-Hong Du
39
5
0
29 May 2023
Dropout Regularization in Extended Generalized Linear Models based on Double Exponential Families
Benedikt Lutke Schwienhorst
Lucas Kock
David J. Nott
Nadja Klein
24
1
0
11 May 2023
Evaluating the Robustness of Machine Reading Comprehension Models to Low Resource Entity Renaming
Clemencia Siro
T. Ajayi
26
2
0
06 Apr 2023
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators
Malte J. Rasch
C. Mackin
Manuel Le Gallo
An Chen
A. Fasoli
...
P. Narayanan
H. Tsai
G. Burr
Abu Sebastian
Vijay Narayanan
13
83
0
16 Feb 2023
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
Chengtai Cao
Fan Zhou
Yurou Dai
Jianping Wang
Kunpeng Zhang
AAML
24
28
0
21 Dec 2022
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
32
63
0
30 Nov 2022
Domain Adaptation under Missingness Shift
Helen Zhou
Sivaraman Balakrishnan
Zachary Chase Lipton
27
8
0
03 Nov 2022
Noise Injection as a Probe of Deep Learning Dynamics
Noam Levi
I. Bloch
M. Freytsis
T. Volansky
40
2
0
24 Oct 2022
Data-Efficient Augmentation for Training Neural Networks
Tian Yu Liu
Baharan Mirzasoleiman
16
7
0
15 Oct 2022
Over-the-Air Split Machine Learning in Wireless MIMO Networks
YuZhi Yang
Zhaoyang Zhang
Yuqing Tian
Zhaohui Yang
Chongwen Huang
C. Zhong
Kai‐Kit Wong
26
23
0
07 Oct 2022
Over-the-Air Federated Learning with Privacy Protection via Correlated Additive Perturbations
Jialing Liao
Zheng Chen
Erik G. Larsson
25
12
0
05 Oct 2022
Frequency Dropout: Feature-Level Regularization via Randomized Filtering
Mobarakol Islam
Ben Glocker
OOD
35
6
0
20 Sep 2022
A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective
Chanwoo Park
Sangdoo Yun
Sanghyuk Chun
AAML
21
32
0
21 Aug 2022
Invariant Structure Learning for Better Generalization and Causal Explainability
Yunhao Ge
Sercan Ö. Arik
Jinsung Yoon
Ao Xu
Laurent Itti
Tomas Pfister
OOD
CML
34
2
0
13 Jun 2022
A Survey on Dropout Methods and Experimental Verification in Recommendation
Yong Li
Weizhi Ma
C. L. Philip Chen
Hao Fei
Yiqun Liu
Shaoping Ma
Yue Yang
33
9
0
05 Apr 2022
Probabilistic fine-tuning of pruning masks and PAC-Bayes self-bounded learning
Soufiane Hayou
Bo He
Gintare Karolina Dziugaite
37
2
0
22 Oct 2021
Federated Dropout -- A Simple Approach for Enabling Federated Learning on Resource Constrained Devices
Dingzhu Wen
Ki-Jun Jeon
Kaibin Huang
FedML
70
90
0
30 Sep 2021
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
27
244
0
09 Oct 2020
Explicit Regularisation in Gaussian Noise Injections
A. Camuto
M. Willetts
Umut Simsekli
Stephen J. Roberts
Chris Holmes
25
55
0
14 Jul 2020
Xiaomingbot: A Multilingual Robot News Reporter
Runxin Xu
Jun Cao
Mingxuan Wang
Jiaze Chen
Hao Zhou
...
Xiang Yin
Xijin Zhang
Songcheng Jiang
Yuxuan Wang
Lei Li
23
11
0
12 Jul 2020
Graph Random Neural Network for Semi-Supervised Learning on Graphs
Wenzheng Feng
Jie Zhang
Yuxiao Dong
Yu Han
Huanbo Luan
Qian Xu
Qiang Yang
Evgeny Kharlamov
Jie Tang
26
387
0
22 May 2020
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
64
37
0
06 Mar 2020
Noisy Machines: Understanding Noisy Neural Networks and Enhancing Robustness to Analog Hardware Errors Using Distillation
Chuteng Zhou
Prad Kadambi
Matthew Mattina
P. Whatmough
19
35
0
14 Jan 2020
Empirical Studies on the Properties of Linear Regions in Deep Neural Networks
Xiao Zhang
Dongrui Wu
21
38
0
04 Jan 2020
Continuous Dropout
Xu Shen
Xinmei Tian
Tongliang Liu
Fang Xu
Dacheng Tao
17
64
0
28 Nov 2019
Medi-Care AI: Predicting Medications From Billing Codes via Robust Recurrent Neural Networks
Deyin Liu
Lin Wu
Xue Li
37
17
0
14 Nov 2019
Post-synaptic potential regularization has potential
Enzo Tartaglione
Daniele Perlo
Marco Grangetto
BDL
AAML
27
6
0
19 Jul 2019
Dimensionality compression and expansion in Deep Neural Networks
Stefano Recanatesi
M. Farrell
Madhu S. Advani
Timothy Moore
Guillaume Lajoie
E. Shea-Brown
20
72
0
02 Jun 2019
Orthogonal Deep Neural Networks
Kui Jia
Shuai Li
Yuxin Wen
Tongliang Liu
Dacheng Tao
34
132
0
15 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
27
149
0
25 Apr 2019
Deep Multi-View Learning using Neuron-Wise Correlation-Maximizing Regularizers
Kui Jia
Jiehong Lin
Mingkui Tan
Dacheng Tao
3DV
25
32
0
25 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
36
136
0
10 Apr 2019
Effective and Efficient Dropout for Deep Convolutional Neural Networks
Shaofeng Cai
Jinyang Gao
Gang Chen
Beng Chin Ooi
Wei Wang
Meihui Zhang
BDL
18
53
0
06 Apr 2019
Cyberthreat Detection from Twitter using Deep Neural Networks
Nuno Dionísio
Fernando Alves
Pedro M. Ferreira
A. Bessani
27
76
0
01 Apr 2019
Semi-Supervised Brain Lesion Segmentation with an Adapted Mean Teacher Model
Wenhui Cui
Yanling Liu
Yuxing Li
Meng-Hao Guo
Yiming Li
Xiuli Li
Tianle Wang
Xiangzhu Zeng
Chuyang Ye
18
174
0
04 Mar 2019
Batch Virtual Adversarial Training for Graph Convolutional Networks
Zhijie Deng
Yinpeng Dong
Jun Zhu
GNN
28
62
0
25 Feb 2019
Ising-Dropout: A Regularization Method for Training and Compression of Deep Neural Networks
Hojjat Salehinejad
S. Valaee
26
30
0
07 Feb 2019
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural Networks
Mouloud Belbahri
Eyyub Sari
Sajad Darabi
V. Nia
MQ
21
1
0
18 Jan 2019
Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing: Observations and Implications
Deren Lei
Zichen Sun
Yijun Xiao
William Yang Wang
33
14
0
01 Nov 2018
Applying Deep Learning To Airbnb Search
Malay Haldar
Mustafa Abdool
Prashant Ramanathan
Tao Xu
Shulin Yang
...
Qing Zhang
Nick Barrow-Williams
B. Turnbull
Brendan M. Collins
Thomas Legrand
DML
23
83
0
22 Oct 2018
An ETF view of Dropout regularization
Dor Bank
Raja Giryes
8
4
0
14 Oct 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
21
57
0
11 Oct 2018
1
2
Next