ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.3432
  4. Cited By
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation

Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

15 August 2013
Yoshua Bengio
Nicholas Léonard
Aaron Courville
ArXivPDFHTML

Papers citing "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation"

19 / 1,869 papers shown
Title
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
20
1,310
0
02 Jun 2016
Noisy Activation Functions
Noisy Activation Functions
Çağlar Gülçehre
Marcin Moczulski
Misha Denil
Yoshua Bengio
9
283
0
01 Mar 2016
Natural Language Understanding with Distributed Representation
Natural Language Understanding with Distributed Representation
Kyunghyun Cho
GNN
BDL
21
55
0
24 Nov 2015
Dynamic Capacity Networks
Dynamic Capacity Networks
Amjad Almahairi
Nicolas Ballas
Tim Cooijmans
Yin Zheng
Hugo Larochelle
Aaron Courville
30
96
0
24 Nov 2015
Compressing Word Embeddings
Compressing Word Embeddings
Martin Andrews
14
20
0
19 Nov 2015
Iterative Refinement of the Approximate Posterior for Directed Belief
  Networks
Iterative Refinement of the Approximate Posterior for Directed Belief Networks
Devon Hjelm
Kyunghyun Cho
Junyoung Chung
R. Salakhutdinov
Vince D. Calhoun
Nebojsa Jojic
BDL
4
1
0
19 Nov 2015
Conditional Computation in Neural Networks for faster models
Conditional Computation in Neural Networks for faster models
Emmanuel Bengio
Pierre-Luc Bacon
Joelle Pineau
Doina Precup
AI4CE
23
315
0
19 Nov 2015
Predicting distributions with Linearizing Belief Networks
Predicting distributions with Linearizing Belief Networks
Yann N. Dauphin
David Grangier
26
18
0
17 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
8
143
0
16 Nov 2015
Describing Multimedia Content using Attention-based Encoder--Decoder
  Networks
Describing Multimedia Content using Attention-based Encoder--Decoder Networks
Kyunghyun Cho
Aaron Courville
Yoshua Bengio
32
411
0
04 Jul 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
19
389
0
17 Jun 2015
Difference Target Propagation
Difference Target Propagation
Dong-Hyun Lee
Saizheng Zhang
Asja Fischer
Yoshua Bengio
AAML
25
346
0
23 Dec 2014
Deep Directed Generative Autoencoders
Deep Directed Generative Autoencoders
Sherjil Ozair
Yoshua Bengio
DRL
24
18
0
02 Oct 2014
Exponentially Increasing the Capacity-to-Computation Ratio for
  Conditional Computation in Deep Learning
Exponentially Increasing the Capacity-to-Computation Ratio for Conditional Computation in Deep Learning
Kyunghyun Cho
Yoshua Bengio
42
38
0
28 Jun 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
59
126
0
11 Jun 2014
Low-Rank Approximations for Conditional Feedforward Computation in Deep
  Neural Networks
Low-Rank Approximations for Conditional Feedforward Computation in Deep Neural Networks
Andrew S. Davis
I. Arel
51
78
0
16 Dec 2013
Learning Factored Representations in a Deep Mixture of Experts
Learning Factored Representations in a Deep Mixture of Experts
David Eigen
MarcÁurelio Ranzato
Ilya Sutskever
MoE
42
367
0
16 Dec 2013
Deep AutoRegressive Networks
Deep AutoRegressive Networks
Karol Gregor
Ivo Danihelka
A. Mnih
Charles Blundell
Daan Wierstra
AI4TS
BDL
24
278
0
31 Oct 2013
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
Previous
123...363738