Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1310.3438
Cited By
On Optimal Probabilities in Stochastic Coordinate Descent Methods
13 October 2013
Peter Richtárik
Martin Takáč
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Optimal Probabilities in Stochastic Coordinate Descent Methods"
38 / 38 papers shown
Title
A stochastic gradient descent algorithm with random search directions
Eméric Gbaguidi
ODL
104
0
0
25 Mar 2025
Importance Sampling for Stochastic Gradient Descent in Deep Neural Networks
Thibault Lahire
31
2
0
29 Mar 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
103
13
0
27 Feb 2023
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
Artavazd Maranjyan
M. Safaryan
Peter Richtárik
96
13
0
28 Oct 2022
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
75
3
0
31 Jan 2022
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
70
42
0
16 Nov 2021
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
94
54
0
30 Jun 2021
Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
M. Safaryan
Filip Hanzely
Peter Richtárik
42
24
0
14 Feb 2021
Adam with Bandit Sampling for Deep Learning
Rui Liu
Tianyi Wu
Barzan Mozafari
84
24
0
24 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
82
0
0
26 Aug 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
118
21
0
25 Oct 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
90
27
0
27 May 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
111
147
0
27 May 2019
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
94
383
0
27 Jan 2019
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
83
26
0
24 Jan 2019
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
85
71
0
09 Sep 2018
Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization
G. Scutari
Ying Sun
103
64
0
17 May 2018
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
120
524
0
02 Mar 2018
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Radoslav Harman
Lenka Filová
Peter Richtárik
49
52
0
17 Jan 2018
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
94
55
0
07 Nov 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
70
38
0
04 Jul 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
104
187
0
15 Jun 2017
Biased Importance Sampling for Deep Neural Network Training
Angelos Katharopoulos
François Fleuret
73
68
0
31 May 2017
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
91
90
0
30 Sep 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
111
117
0
06 Feb 2016
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
128
197
0
13 Dec 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
92
23
0
07 Jun 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
137
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
167
177
0
12 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
126
99
0
08 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
195
83
0
27 Dec 2014
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
83
130
0
27 Dec 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
155
58
0
21 Nov 2014
Matrix Completion under Interval Uncertainty
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
173
19
0
11 Aug 2014
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization
Amir Daneshmand
F. Facchinei
Vyacheslav Kungurtsev
G. Scutari
115
60
0
16 Jul 2014
Coordinate Descent with Online Adaptation of Coordinate Frequencies
Tobias Glasmachers
Ürün Dogan
64
4
0
15 Jan 2014
Accelerated, Parallel and Proximal Coordinate Descent
Olivier Fercoq
Peter Richtárik
119
372
0
20 Dec 2013
Parallel Coordinate Descent Methods for Big Data Optimization
Peter Richtárik
Martin Takáč
132
487
0
04 Dec 2012
1