ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.3438
  4. Cited By
On Optimal Probabilities in Stochastic Coordinate Descent Methods

On Optimal Probabilities in Stochastic Coordinate Descent Methods

13 October 2013
Peter Richtárik
Martin Takáč
ArXiv (abs)PDFHTML

Papers citing "On Optimal Probabilities in Stochastic Coordinate Descent Methods"

38 / 38 papers shown
Title
A stochastic gradient descent algorithm with random search directions
A stochastic gradient descent algorithm with random search directions
Eméric Gbaguidi
ODL
104
0
0
25 Mar 2025
Importance Sampling for Stochastic Gradient Descent in Deep Neural
  Networks
Importance Sampling for Stochastic Gradient Descent in Deep Neural Networks
Thibault Lahire
31
2
0
29 Mar 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone
  Variational Inequalities: Improved Analysis under Weaker Conditions
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
103
13
0
27 Feb 2023
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
Artavazd Maranjyan
M. Safaryan
Peter Richtárik
96
13
0
28 Oct 2022
L-SVRG and L-Katyusha with Adaptive Sampling
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
75
3
0
31 Jan 2022
Stochastic Extragradient: General Analysis and Improved Rates
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
70
42
0
16 Nov 2021
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
  Games: Convergence Analysis under Expected Co-coercivity
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
94
54
0
30 Jun 2021
Smoothness Matrices Beat Smoothness Constants: Better Communication
  Compression Techniques for Distributed Optimization
Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
M. Safaryan
Filip Hanzely
Peter Richtárik
42
24
0
14 Feb 2021
Adam with Bandit Sampling for Deep Learning
Adam with Bandit Sampling for Deep Learning
Rui Liu
Tianyi Wu
Barzan Mozafari
84
24
0
24 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
87
0
0
26 Aug 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal
  Sampling
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
118
21
0
25 Oct 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and
  Many New Methods
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
90
27
0
27 May 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and
  Coordinate Descent
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
111
147
0
27 May 2019
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
94
383
0
27 Jan 2019
SAGA with Arbitrary Sampling
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
83
26
0
24 Jan 2019
SEGA: Variance Reduction via Gradient Sketching
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
85
71
0
09 Sep 2018
Parallel and Distributed Successive Convex Approximation Methods for
  Big-Data Optimization
Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization
G. Scutari
Ying Sun
103
64
0
17 May 2018
Not All Samples Are Created Equal: Deep Learning with Importance
  Sampling
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
120
525
0
02 Mar 2018
A Randomized Exchange Algorithm for Computing Optimal Approximate
  Designs of Experiments
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Radoslav Harman
Lenka Filová
Peter Richtárik
51
52
0
17 Jan 2018
Safe Adaptive Importance Sampling
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
94
55
0
07 Nov 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
70
38
0
04 Jul 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling
  and Imaging Applications
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
104
187
0
15 Jun 2017
Biased Importance Sampling for Deep Neural Network Training
Biased Importance Sampling for Deep Neural Network Training
Angelos Katharopoulos
François Fleuret
73
68
0
31 May 2017
A Primer on Coordinate Descent Algorithms
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
91
89
0
30 Sep 2016
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
111
117
0
06 Feb 2016
Distributed Optimization with Arbitrary Local Solvers
Distributed Optimization with Arbitrary Local Solvers
Chenxin Ma
Jakub Konecný
Martin Jaggi
Virginia Smith
Michael I. Jordan
Peter Richtárik
Martin Takáč
128
197
0
13 Dec 2015
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex
  Losses
Primal Method for ERM with Flexible Mini-batching Schemes and Non-convex Losses
Dominik Csiba
Peter Richtárik
92
23
0
07 Jun 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
137
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
167
177
0
12 Feb 2015
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
126
99
0
08 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable
  Overapproximation
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
195
83
0
27 Dec 2014
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
83
130
0
27 Dec 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
155
58
0
21 Nov 2014
Matrix Completion under Interval Uncertainty
Matrix Completion under Interval Uncertainty
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
176
19
0
11 Aug 2014
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data
  Optimization
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization
Amir Daneshmand
F. Facchinei
Vyacheslav Kungurtsev
G. Scutari
118
60
0
16 Jul 2014
Coordinate Descent with Online Adaptation of Coordinate Frequencies
Coordinate Descent with Online Adaptation of Coordinate Frequencies
Tobias Glasmachers
Ürün Dogan
66
4
0
15 Jan 2014
Accelerated, Parallel and Proximal Coordinate Descent
Accelerated, Parallel and Proximal Coordinate Descent
Olivier Fercoq
Peter Richtárik
119
372
0
20 Dec 2013
Parallel Coordinate Descent Methods for Big Data Optimization
Parallel Coordinate Descent Methods for Big Data Optimization
Peter Richtárik
Martin Takáč
134
487
0
04 Dec 2012
1