Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.5836
Cited By
Avoiding pathologies in very deep networks
24 February 2014
David Duvenaud
Oren Rippel
Ryan P. Adams
Zoubin Ghahramani
ODL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Avoiding pathologies in very deep networks"
11 / 11 papers shown
Title
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
94
0
0
01 Jul 2024
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
128
1,830
0
20 Dec 2013
High-Dimensional Probability Estimation with Deep Density Models
Oren Rippel
Ryan P. Adams
111
124
0
20 Feb 2013
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
David Duvenaud
J. Lloyd
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
65
509
0
20 Feb 2013
Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals
Chunyi Wang
Radford M. Neal
71
52
0
26 Dec 2012
On the difficulty of training Recurrent Neural Networks
Razvan Pascanu
Tomas Mikolov
Yoshua Bengio
ODL
134
5,318
0
21 Nov 2012
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
75
1,178
0
02 Nov 2012
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
385
7,650
0
03 Jul 2012
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
87
329
0
19 Dec 2011
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
122
192
0
19 Oct 2011
Learning the Structure of Deep Sparse Graphical Models
Ryan P. Adams
Hanna M. Wallach
Zoubin Ghahramani
182
87
0
31 Dec 2009
1