ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.6382
  4. Cited By
CNN Features off-the-shelf: an Astounding Baseline for Recognition

CNN Features off-the-shelf: an Astounding Baseline for Recognition

23 March 2014
A. Razavian
Hossein Azizpour
Josephine Sullivan
S. Carlsson
ArXivPDFHTML

Papers citing "CNN Features off-the-shelf: an Astounding Baseline for Recognition"

16 / 466 papers shown
Title
From Image-level to Pixel-level Labeling with Convolutional Networks
From Image-level to Pixel-level Labeling with Convolutional Networks
Pedro H. O. Pinheiro
R. Collobert
SSeg
VLM
21
53
0
23 Nov 2014
Affordances Provide a Fundamental Categorization Principle for Visual
  Scenes
Affordances Provide a Fundamental Categorization Principle for Visual Scenes
Michelle R. Greene
Christopher A. Baldassano
A. Esteva
D. Beck
Li Fei-Fei
25
3
0
19 Nov 2014
Part Detector Discovery in Deep Convolutional Neural Networks
Part Detector Discovery in Deep Convolutional Neural Networks
Marcel Simon
E. Rodner
Joachim Denzler
ObjD
18
75
0
12 Nov 2014
Convolutional Neural Network-based Place Recognition
Convolutional Neural Network-based Place Recognition
Zetao Chen
Obadiah Lam
A. Jacobson
Michael Milford
24
263
0
06 Nov 2014
Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on
  ImageNet
Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet
Matthias Kümmerer
Lucas Theis
Matthias Bethge
FAtt
27
407
0
04 Nov 2014
A comparison of dense region detectors for image search and fine-grained
  classification
A comparison of dense region detectors for image search and fine-grained classification
Ahmet Iscen
Giorgos Tolias
P. Gosselin
Hervé Jégou
19
59
0
29 Oct 2014
Learning Invariant Color Features for Person Re-Identification
Learning Invariant Color Features for Person Re-Identification
Rahul Rama Varior
Gang Wang
Jiwen Lu
23
84
0
04 Oct 2014
HD-CNN: Hierarchical Deep Convolutional Neural Network for Large Scale
  Visual Recognition
HD-CNN: Hierarchical Deep Convolutional Neural Network for Large Scale Visual Recognition
Zhicheng Yan
Hao Zhang
Robinson Piramuthu
Vignesh Jagadeesh
D. DeCoste
Wei Di
Yizhou Yu
50
60
0
03 Oct 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
160
99,590
0
04 Sep 2014
Analyzing the Performance of Multilayer Neural Networks for Object
  Recognition
Analyzing the Performance of Multilayer Neural Networks for Object Recognition
Pulkit Agrawal
Ross B. Girshick
Jitendra Malik
SSL
35
440
0
07 Jul 2014
CNN: Single-label to Multi-label
CNN: Single-label to Multi-label
Yunchao Wei
W. Xia
Junshi Huang
Bingbing Ni
Jian Dong
Yao-Min Zhao
Shuicheng Yan
39
671
0
22 Jun 2014
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
  Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
ObjD
46
11,134
0
18 Jun 2014
Joint Training of a Convolutional Network and a Graphical Model for
  Human Pose Estimation
Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation
Jonathan Tompson
Arjun Jain
Yann LeCun
C. Bregler
3DH
54
1,532
0
11 Jun 2014
Deep Epitomic Convolutional Neural Networks
Deep Epitomic Convolutional Neural Networks
George Papandreou
50
7
0
10 Jun 2014
Descriptor Matching with Convolutional Neural Networks: a Comparison to SIFT
Philipp Fischer
Alexey Dosovitskiy
Thomas Brox
26
276
0
22 May 2014
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Ken Chatfield
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
32
3,412
0
14 May 2014
Previous
123...1089