ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.0099
  4. Cited By
Venture: a higher-order probabilistic programming platform with
  programmable inference

Venture: a higher-order probabilistic programming platform with programmable inference

1 April 2014
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
ArXiv (abs)PDFHTML

Papers citing "Venture: a higher-order probabilistic programming platform with programmable inference"

50 / 99 papers shown
Title
Probabilistic Programming with Programmable Variational Inference
Probabilistic Programming with Programmable Variational Inference
McCoy R. Becker
Alexander K. Lew
Xiaoyan Wang
Matin Ghavami
Mathieu Huot
Martin Rinard
Vikash K. Mansinghka
126
5
0
22 Jun 2024
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
63
2
0
01 Nov 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
59
0
0
23 Oct 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
78
0
0
10 Jun 2023
Declarative Probabilistic Logic Programming in Discrete-Continuous
  Domains
Declarative Probabilistic Logic Programming in Discrete-Continuous Domains
Pedro Zuidberg Dos Martires
Luc de Raedt
Angelika Kimmig
94
4
0
21 Feb 2023
ADEV: Sound Automatic Differentiation of Expected Values of
  Probabilistic Programs
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs
Alexander K. Lew
Mathieu Huot
S. Staton
Vikash K. Mansinghka
59
22
0
13 Dec 2022
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
50
11
0
26 Oct 2022
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
96
10
0
22 Aug 2022
Foundation Posteriors for Approximate Probabilistic Inference
Foundation Posteriors for Approximate Probabilistic Inference
Mike Wu
Noah D. Goodman
UQCV
94
6
0
19 May 2022
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Alexander K. Lew
Marco F. Cusumano-Towner
Vikash K. Mansinghka
BDL
60
11
0
05 Mar 2022
Toward an Idiomatic Framework for Cognitive Robotics
Toward an Idiomatic Framework for Cognitive Robotics
Malte Rørmose Damgaard
Rasmus Pedersen
T. Bak
LM&Ro
72
3
0
25 Nov 2021
Unifying AI Algorithms with Probabilistic Programming using Implicitly
  Defined Representations
Unifying AI Algorithms with Probabilistic Programming using Implicitly Defined Representations
Avi Pfeffer
M. Harradon
Joseph Campolongo
S. Cvijic
46
2
0
05 Oct 2021
DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in
  Deep Learning
DomiKnowS: A Library for Integration of Symbolic Domain Knowledge in Deep Learning
Hossein Rajaby Faghihi
Quan Guo
Andrzej Uszok
Aliakbar Nafar
Elaheh Raisi
Parisa Kordjamshidi
AI4CE
66
18
0
27 Aug 2021
Nonparametric Hamiltonian Monte Carlo
Nonparametric Hamiltonian Monte Carlo
Carol Mak
Fabian Zaiser
C.-H. Luke Ong
60
6
0
18 Jun 2021
Expectation Programming: Adapting Probabilistic Programming Systems to
  Estimate Expectations Efficiently
Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently
Tim Reichelt
Adam Goliñski
C.-H. Luke Ong
Tom Rainforth
TPM
60
0
0
09 Jun 2021
Meta-Learning an Inference Algorithm for Probabilistic Programs
Meta-Learning an Inference Algorithm for Probabilistic Programs
Gwonsoo Che
Hongseok Yang
TPM
35
1
0
01 Mar 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
84
16
0
01 Mar 2021
SBI: A Simulation-Based Test of Identifiability for Bayesian Causal
  Inference
SBI: A Simulation-Based Test of Identifiability for Bayesian Causal Inference
Sam Witty
David D. Jensen
Vikash K. Mansinghka
CML
71
3
0
23 Feb 2021
Control-Data Separation and Logical Condition Propagation for Efficient
  Inference on Probabilistic Programs
Control-Data Separation and Logical Condition Propagation for Efficient Inference on Probabilistic Programs
I. Hasuo
Yuichiro Oyabu
Clovis Eberhart
Kohei Suenaga
Kenta Cho
Shin-ya Katsumata
TPM
43
3
0
05 Jan 2021
Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Feynman T. Liang
Nimar S. Arora
N. Tehrani
Y. Li
Michael Tingley
E. Meijer
50
0
0
23 Oct 2020
PPL Bench: Evaluation Framework For Probabilistic Programming Languages
PPL Bench: Evaluation Framework For Probabilistic Programming Languages
S. Kulkarni
K. Shah
Nimar S. Arora
Xiaoyang Sean Wang
Y. Li
...
David Noursi
Narjes Torabi
Sepehr Akhavan Masouleh
Eric Lippert
E. Meijer
8
2
0
17 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDLMedIm
79
9
0
16 Sep 2020
PClean: Bayesian Data Cleaning at Scale with Domain-Specific
  Probabilistic Programming
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming
Alexander K. Lew
Monica Agrawal
David Sontag
Vikash K. Mansinghka
134
28
0
23 Jul 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
37
0
0
02 Mar 2020
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
Mohamed Tarek
Kai Xu
Martin Trapp
Hong Ge
Zoubin Ghahramani
43
7
0
07 Feb 2020
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
51
5
0
09 Jan 2020
Parameter elimination in particle Gibbs sampling
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
83
15
0
30 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
70
20
0
29 Oct 2019
Attention for Inference Compilation
Attention for Inference Compilation
William Harvey
Andreas Munk
A. G. Baydin
Alexander Bergholm
Frank Wood
57
9
0
25 Oct 2019
Probabilistic Surrogate Networks for Simulators with Unbounded
  Randomness
Probabilistic Surrogate Networks for Simulators with Unbounded Randomness
Andreas Munk
Berend Zwartsenberg
Adam Scibior
A. G. Baydin
Andrew Stewart
G. Fernlund
A. Poursartip
Frank Wood
TPM
66
4
0
25 Oct 2019
Particle filter with rejection control and unbiased estimator of the
  marginal likelihood
Particle filter with rejection control and unbiased estimator of the marginal likelihood
J. Kudlicka
Lawrence M. Murray
Thomas B. Schon
Fredrik Lindsten
115
2
0
21 Oct 2019
Amortized Rejection Sampling in Universal Probabilistic Programming
Amortized Rejection Sampling in Universal Probabilistic Programming
Saeid Naderiparizi
Adam Scibior
Andreas Munk
Mehrdad Ghadiri
A. G. Baydin
...
R. Zinkov
Philip Torr
Tom Rainforth
Yee Whye Teh
Frank Wood
69
7
0
20 Oct 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic
  Programming
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
60
17
0
17 Oct 2019
Population Predictive Checks
Population Predictive Checks
Rajesh Ranganath
David M. Blei
Rajesh Ranganath
66
13
0
02 Aug 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
70
26
0
20 Jul 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
58
62
0
14 Jul 2019
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
63
10
0
10 Jul 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
104
7
0
20 Jun 2019
Declarative Learning-Based Programming as an Interface to AI Systems
Declarative Learning-Based Programming as an Interface to AI Systems
Parisa Kordjamshidi
Dan Roth
Kristian Kersting
74
4
0
18 Jun 2019
The Random Conditional Distribution for Higher-Order Probabilistic
  Inference
The Random Conditional Distribution for Higher-Order Probabilistic Inference
Zenna Tavares
Xin Zhang
Edgar Minaysan
Javier Burroni
Rajesh Ranganath
Armando Solar-Lezama
45
9
0
25 Mar 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic
  Programming Language
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
Willie Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric Xing
94
18
0
31 Jan 2019
Soft Constraints for Inference with Declarative Knowledge
Soft Constraints for Inference with Declarative Knowledge
Zenna Tavares
Javier Burroni
Edgar Minaysan
Armando Solar-Lezama
Rajesh Ranganath
46
2
0
16 Jan 2019
Doubly Bayesian Optimization
Alexander Lavin
38
0
0
11 Dec 2018
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
83
13
0
04 Dec 2018
Composing Modeling and Inference Operations with Probabilistic Program
  Combinators
Composing Modeling and Inference Operations with Probabilistic Program Combinators
Eli Sennesh
Adam Scibior
Hao Wu
Jan-Willem van de Meent
TPM
29
1
0
14 Nov 2018
Simple, Distributed, and Accelerated Probabilistic Programming
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
85
56
0
05 Nov 2018
Probabilistic Programming with Densities in SlicStan: Efficient,
  Flexible and Deterministic
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
77
24
0
02 Nov 2018
Automated learning with a probabilistic programming language: Birch
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
76
63
0
02 Oct 2018
Inference Over Programs That Make Predictions
Inference Over Programs That Make Predictions
Yura N. Perov
35
2
0
02 Oct 2018
Compiling Stan to Generative Probabilistic Languages and Extension to
  Deep Probabilistic Programming
Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
Guillaume Baudart
Javier Burroni
Martin Hirzel
Louis Mandel
Avraham Shinnar
BDL
40
4
0
30 Sep 2018
12
Next