Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1404.6298
Cited By
v1
v2
v3
v4
v5 (latest)
The Use of a Single Pseudo-Sample in Approximate Bayesian Computation
25 April 2014
L. Bornn
Natesh Pillai
Aaron Smith
D. Woodard
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Use of a Single Pseudo-Sample in Approximate Bayesian Computation"
24 / 24 papers shown
Title
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
191
220
0
09 May 2023
Importance is Important: A Guide to Informed Importance Tempering Methods
Guanxun Li
Aaron Smith
Quan Zhou
72
1
0
13 Apr 2023
Guided sequential ABC schemes for intractable Bayesian models
Umberto Picchini
M. Tamborrino
102
8
0
24 Jun 2022
Black-box Bayesian inference for economic agent-based models
Joel Dyer
Patrick W Cannon
J. Farmer
Sebastian M. Schmon
107
24
0
01 Feb 2022
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo Objectives
Pierre-Alexandre Mattei
J. Frellsen
51
4
0
26 Jan 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
77
26
0
20 Dec 2021
Metropolis-Hastings with Averaged Acceptance Ratios
Christophe Andrieu
Sinan Yildiri
Arnaud Doucet
Nicolas Chopin
72
6
0
29 Dec 2020
No Free Lunch for Approximate MCMC
J. Johndrow
Natesh S. Pillai
Aaron Smith
102
18
0
23 Oct 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
95
17
0
14 Apr 2020
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
95
47
0
29 Oct 2019
Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario
Christophe Andrieu
Samuel Livingstone
73
28
0
14 Jun 2019
Stratified sampling and bootstrapping for approximate Bayesian computation
Umberto Picchini
R. Everitt
58
1
0
20 May 2019
Spectral Density-Based and Measure-Preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
E. Buckwar
M. Tamborrino
I. Tubikanec
68
36
0
04 Mar 2019
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
M. Vihola
Jordan Franks
39
2
0
01 Feb 2019
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities?
Oren Mangoubi
Natesh S. Pillai
Aaron Smith
103
32
0
09 Aug 2018
On the utility of Metropolis-Hastings with asymmetric acceptance ratio
Christophe Andrieu
Arnaud Doucet
S. Yıldırım
Nicolas Chopin
46
17
0
26 Mar 2018
ABC Samplers
Y. Fan
Scott A. Sisson
53
28
0
26 Feb 2018
Improving approximate Bayesian computation via quasi-Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
68
26
0
03 Oct 2017
Pseudo-marginal Metropolis--Hastings using averages of unbiased estimators
Chris Sherlock
Alexandre Hoang Thiery
Anthony Lee
58
5
0
31 Oct 2016
Which ergodic averages have finite asymptotic variance?
George Deligiannidis
Anthony Lee
59
13
0
27 Jun 2016
POPE: Post Optimization Posterior Evaluation of Likelihood Free Models
Edward Meeds
Michael Chiang
Mary Lee
Olivier Cinquin
John S. Lowengrub
Max Welling
38
0
0
09 Dec 2014
Optimal scaling for the pseudo-marginal random walk Metropolis: insensitivity to the noise generating mechanism
Chris Sherlock
OT
83
9
0
19 Aug 2014
Ergodicity of Approximate MCMC Chains with Applications to Large Data Sets
Natesh S. Pillai
Aaron Smith
96
59
0
01 May 2014
Establishing some order amongst exact approximations of MCMCs
Christophe Andrieu
M. Vihola
95
60
0
28 Apr 2014
1