Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.1827
Cited By
v1
v2
v3
v4 (latest)
Recursive Neural Networks Can Learn Logical Semantics
6 June 2014
Samuel R. Bowman
Christopher Potts
Christopher D. Manning
NAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Recursive Neural Networks Can Learn Logical Semantics"
11 / 11 papers shown
Title
Ontology Reasoning with Deep Neural Networks
Patrick Hohenecker
Thomas Lukasiewicz
NAI
101
85
0
24 Aug 2018
Semantic Parsing: Syntactic assurance to target sentence using LSTM Encoder CFG-Decoder
Fabiano Ferreira Luz
Marcelo Finger
13
1
0
18 Jul 2018
Learned in Translation: Contextualized Word Vectors
Bryan McCann
James Bradbury
Caiming Xiong
R. Socher
131
910
0
01 Aug 2017
Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks
Rajarshi Das
Arvind Neelakantan
David Belanger
Andrew McCallum
NAI
AI4CE
LRM
100
271
0
05 Jul 2016
Building a Fine-Grained Entity Typing System Overnight for a New X (X = Language, Domain, Genre)
Lifu Huang
Jonathan May
Xiaoman Pan
Heng Ji
56
19
0
10 Mar 2016
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
A. Kumar
Ozan Irsoy
Peter Ondruska
Mohit Iyyer
James Bradbury
Ishaan Gulrajani
Victor Zhong
Romain Paulus
R. Socher
129
1,182
0
24 Jun 2015
Compositional Vector Space Models for Knowledge Base Completion
Arvind Neelakantan
Benjamin Roth
Andrew McCallum
BDL
CoGe
KELM
75
283
0
24 Apr 2015
When Are Tree Structures Necessary for Deep Learning of Representations?
Jiwei Li
Thang Luong
Dan Jurafsky
Eduard H. Hovy
111
227
0
28 Feb 2015
Towards a Model Theory for Distributed Representations
R. Guha
87
22
0
21 Oct 2014
Learning to Execute
Wojciech Zaremba
Ilya Sutskever
ODL
114
560
0
17 Oct 2014
Learning Distributed Word Representations for Natural Logic Reasoning
Samuel R. Bowman
Christopher Potts
Christopher D. Manning
NAI
75
32
0
15 Oct 2014
1