ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.2751
  4. Cited By
Reweighted Wake-Sleep

Reweighted Wake-Sleep

11 June 2014
J. Bornschein
Yoshua Bengio
    BDL
ArXivPDFHTML

Papers citing "Reweighted Wake-Sleep"

50 / 51 papers shown
Title
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Q. Wang
Marco Federici
H. V. Hoof
UQCV
BDL
51
13
0
08 Jan 2025
Improving Tree Probability Estimation with Stochastic Optimization and
  Variance Reduction
Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
Tianyu Xie
Musu Yuan
Minghua Deng
Cheng Zhang
34
0
0
09 Sep 2024
Torchtree: flexible phylogenetic model development and inference using
  PyTorch
Torchtree: flexible phylogenetic model development and inference using PyTorch
Mathieu Fourment
Matthew Macaulay
Christiaan J. Swanepoel
Xiang Ji
M. Suchard
Frederick A Matsen IV
BDL
29
0
0
26 Jun 2024
Towards Model-Agnostic Posterior Approximation for Fast and Accurate
  Variational Autoencoders
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
29
0
0
13 Mar 2024
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
48
2
0
05 Mar 2024
Delta-AI: Local objectives for amortized inference in sparse graphical
  models
Delta-AI: Local objectives for amortized inference in sparse graphical models
Jean-Pierre Falet
Hae Beom Lee
Nikolay Malkin
Chen Sun
Dragos Secrieru
Thomas Jiralerspong
Dinghuai Zhang
Guillaume Lajoie
Yoshua Bengio
51
6
0
03 Oct 2023
Massively Parallel Reweighted Wake-Sleep
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
24
2
0
18 May 2023
U-Statistics for Importance-Weighted Variational Inference
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Multi-level Data Representation For Training Deep Helmholtz Machines
Multi-level Data Representation For Training Deep Helmholtz Machines
J. M. Ramos
Luis Sa-Couto
Andreas Wichert
18
0
0
26 Oct 2022
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
136
78
0
02 Oct 2022
Tighter Variational Bounds are Not Necessarily Better. A Research Report
  on Implementation, Ablation Study, and Extensions
Tighter Variational Bounds are Not Necessarily Better. A Research Report on Implementation, Ablation Study, and Extensions
Amine MĆharrak
Vít Ruzicka
Sangyun Shin
M. Vankadari
DRL
16
0
0
23 Sep 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
A Variational Approach to Bayesian Phylogenetic Inference
A Variational Approach to Bayesian Phylogenetic Inference
Cheng Zhang
IV FrederickA.Matsen
BDL
24
17
0
16 Apr 2022
Transport Score Climbing: Variational Inference Using Forward KL and
  Adaptive Neural Transport
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
30
6
0
03 Feb 2022
Learning cortical representations through perturbed and adversarial
  dreaming
Learning cortical representations through perturbed and adversarial dreaming
Nicolas Deperrois
Mihai A. Petrovici
Walter Senn
Jakob Jordan
GAN
CLL
58
21
0
09 Sep 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
30
40
0
30 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
Planning from Pixels in Atari with Learned Symbolic Representations
Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi
Frederik K. Drachmann
Thomas Bolander
26
11
0
16 Dec 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Composing Modeling and Inference Operations with Probabilistic Program
  Combinators
Composing Modeling and Inference Operations with Probabilistic Program Combinators
Eli Sennesh
Adam Scibior
Hao Wu
Jan-Willem van de Meent
TPM
18
1
0
14 Nov 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Generative Modeling by Inclusive Neural Random Fields with Applications
  in Image Generation and Anomaly Detection
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
14
30
0
01 Jun 2018
AMR Parsing as Graph Prediction with Latent Alignment
AMR Parsing as Graph Prediction with Latent Alignment
Chunchuan Lyu
Ivan Titov
GNN
BDL
19
127
0
14 May 2018
Regularizing Deep Neural Networks by Noise: Its Interpretation and
  Optimization
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
29
197
0
14 Oct 2017
Energy-based Models for Video Anomaly Detection
Energy-based Models for Video Anomaly Detection
H. Vu
Dinh Q. Phung
T. Nguyen
Anthony Trevors
Svetha Venkatesh
26
22
0
17 Aug 2017
On Unifying Deep Generative Models
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRL
GAN
41
127
0
02 Jun 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
LogitBoost autoregressive networks
LogitBoost autoregressive networks
M. Goessling
TPM
18
5
0
22 Mar 2017
Boundary-Seeking Generative Adversarial Networks
Boundary-Seeking Generative Adversarial Networks
R. Devon Hjelm
Athul Paul Jacob
Tong Che
Adam Trischler
Kyunghyun Cho
Yoshua Bengio
GAN
23
170
0
27 Feb 2017
On the Origin of Deep Learning
On the Origin of Deep Learning
Haohan Wang
Bhiksha Raj
MedIm
3DV
VLM
48
223
0
24 Feb 2017
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
32
42
0
22 Nov 2016
Unsupervised Learning with Truncated Gaussian Graphical Models
Unsupervised Learning with Truncated Gaussian Graphical Models
Qinliang Su
X. Liao
Chunyuan Li
Zhe Gan
Lawrence Carin
18
8
0
15 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
42
313
0
07 May 2016
Learning to Generate with Memory
Learning to Generate with Memory
Chongxuan Li
Jun Zhu
Bo Zhang
BDL
24
42
0
24 Feb 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
Online Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and
  Denoising Autoencoders
Online Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and Denoising Autoencoders
Alexander Ororbia
C. Lee Giles
David Reitter
AI4CE
20
30
0
22 Nov 2015
Neural Variational Inference for Text Processing
Neural Variational Inference for Text Processing
Yishu Miao
Lei Yu
Phil Blunsom
VLM
DRL
28
616
0
19 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
16
143
0
16 Nov 2015
Learning Wake-Sleep Recurrent Attention Models
Learning Wake-Sleep Recurrent Attention Models
Jimmy Ba
Roger C. Grosse
Ruslan Salakhutdinov
B. Frey
BDL
32
65
0
22 Sep 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
62
1,236
0
01 Sep 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
24
145
0
10 Jun 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
103
6,635
0
12 Mar 2015
12
Next