Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.2751
Cited By
Reweighted Wake-Sleep
11 June 2014
J. Bornschein
Yoshua Bengio
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reweighted Wake-Sleep"
50 / 51 papers shown
Title
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Q. Wang
Marco Federici
H. V. Hoof
UQCV
BDL
51
13
0
08 Jan 2025
Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
Tianyu Xie
Musu Yuan
Minghua Deng
Cheng Zhang
34
0
0
09 Sep 2024
Torchtree: flexible phylogenetic model development and inference using PyTorch
Mathieu Fourment
Matthew Macaulay
Christiaan J. Swanepoel
Xiang Ji
M. Suchard
Frederick A Matsen IV
BDL
29
0
0
26 Jun 2024
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
29
0
0
13 Mar 2024
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
48
2
0
05 Mar 2024
Delta-AI: Local objectives for amortized inference in sparse graphical models
Jean-Pierre Falet
Hae Beom Lee
Nikolay Malkin
Chen Sun
Dragos Secrieru
Thomas Jiralerspong
Dinghuai Zhang
Guillaume Lajoie
Yoshua Bengio
51
6
0
03 Oct 2023
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
24
2
0
18 May 2023
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Multi-level Data Representation For Training Deep Helmholtz Machines
J. M. Ramos
Luis Sa-Couto
Andreas Wichert
18
0
0
26 Oct 2022
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
22
32
0
14 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
136
78
0
02 Oct 2022
Tighter Variational Bounds are Not Necessarily Better. A Research Report on Implementation, Ablation Study, and Extensions
Amine MĆharrak
Vít Ruzicka
Sangyun Shin
M. Vankadari
DRL
16
0
0
23 Sep 2022
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
A Variational Approach to Bayesian Phylogenetic Inference
Cheng Zhang
IV FrederickA.Matsen
BDL
24
17
0
16 Apr 2022
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
30
6
0
03 Feb 2022
Learning cortical representations through perturbed and adversarial dreaming
Nicolas Deperrois
Mihai A. Petrovici
Walter Senn
Jakob Jordan
GAN
CLL
58
21
0
09 Sep 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
30
40
0
30 Jun 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
Planning from Pixels in Atari with Learned Symbolic Representations
Andrea Dittadi
Frederik K. Drachmann
Thomas Bolander
26
11
0
16 Dec 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Composing Modeling and Inference Operations with Probabilistic Program Combinators
Eli Sennesh
Adam Scibior
Hao Wu
Jan-Willem van de Meent
TPM
18
1
0
14 Nov 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
14
30
0
01 Jun 2018
AMR Parsing as Graph Prediction with Latent Alignment
Chunchuan Lyu
Ivan Titov
GNN
BDL
19
127
0
14 May 2018
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
29
197
0
14 Oct 2017
Energy-based Models for Video Anomaly Detection
H. Vu
Dinh Q. Phung
T. Nguyen
Anthony Trevors
Svetha Venkatesh
26
22
0
17 Aug 2017
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRL
GAN
41
127
0
02 Jun 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
LogitBoost autoregressive networks
M. Goessling
TPM
18
5
0
22 Mar 2017
Boundary-Seeking Generative Adversarial Networks
R. Devon Hjelm
Athul Paul Jacob
Tong Che
Adam Trischler
Kyunghyun Cho
Yoshua Bengio
GAN
23
170
0
27 Feb 2017
On the Origin of Deep Learning
Haohan Wang
Bhiksha Raj
MedIm
3DV
VLM
48
223
0
24 Feb 2017
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
32
42
0
22 Nov 2016
Unsupervised Learning with Truncated Gaussian Graphical Models
Qinliang Su
X. Liao
Chunyuan Li
Zhe Gan
Lawrence Carin
18
8
0
15 Nov 2016
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
42
313
0
07 May 2016
Learning to Generate with Memory
Chongxuan Li
Jun Zhu
Bo Zhang
BDL
24
42
0
24 Feb 2016
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
Online Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and Denoising Autoencoders
Alexander Ororbia
C. Lee Giles
David Reitter
AI4CE
20
30
0
22 Nov 2015
Neural Variational Inference for Text Processing
Yishu Miao
Lei Yu
Phil Blunsom
VLM
DRL
28
616
0
19 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
16
143
0
16 Nov 2015
Learning Wake-Sleep Recurrent Attention Models
Jimmy Ba
Roger C. Grosse
Ruslan Salakhutdinov
B. Frey
BDL
32
65
0
22 Sep 2015
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
62
1,236
0
01 Sep 2015
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
24
145
0
10 Jun 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
103
6,635
0
12 Mar 2015
1
2
Next