Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.4905
Cited By
v1
v2 (latest)
Variational Gaussian Process State-Space Models
18 June 2014
R. Frigola
Yutian Chen
C. Rasmussen
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Gaussian Process State-Space Models"
50 / 87 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
160
0
0
24 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
174
0
0
02 Mar 2025
Koopman-Equivariant Gaussian Processes
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
102
2
0
10 Feb 2025
Recursive Gaussian Process State Space Model
Tengjie Zheng
Lin Cheng
Lin Cheng
Shengping Gong
Xu Huang
117
0
0
22 Nov 2024
Hybrid Data-Driven SSM for Interpretable and Label-Free mmWave Channel Prediction
Yiyong Sun
Jiajun He
Zhidi Lin
Wenqiang Pu
Feng Yin
Hing Cheung So
174
1
0
18 Nov 2024
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
120
3
0
19 Jul 2024
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
124
0
0
17 May 2024
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
65
4
0
10 Dec 2023
A projected nonlinear state-space model for forecasting time series signals
Christian Donner
Anuj Mishra
Hideaki Shimazaki
AI4TS
61
0
0
22 Nov 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
88
3
0
13 Sep 2023
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Zhidi Lin
Juan Maroñas
Ying Li
Feng Yin
Sergios Theodoridis
82
3
0
03 Sep 2023
Multi-Response Heteroscedastic Gaussian Process Models and Their Inference
Taehee Lee
Jun S. Liu
40
1
0
29 Aug 2023
The Bayesian Context Trees State Space Model for time series modelling and forecasting
I. Papageorgiou
Ioannis Kontoyiannis
AI4TS
60
2
0
02 Aug 2023
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Matthew Dowling
Yuan Zhao
Il Memming Park
59
6
0
01 Jun 2023
Variational Nonlinear Kalman Filtering with Unknown Process Noise Covariance
Hua Lan
Jinjie Hu
Zengfu Wang
Q. Cheng
46
11
0
06 May 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
66
9
0
20 Feb 2023
Variational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization
JIAN-PENG Cao
Myeongjong Kang
Felix Jimenez
H. Sang
Florian Schäfer
Matthias Katzfuss
66
7
0
30 Jan 2023
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
98
44
0
30 Jan 2023
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Yuhao Liu
Marzieh Ajirak
Petar M. Djurić
96
14
0
29 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
106
7
0
21 Jan 2023
Output-Dependent Gaussian Process State-Space Model
Zhidi Lin
Lei Cheng
Feng Yin
Le Xu
Shuguang Cui
UQCV
80
5
0
15 Dec 2022
Recurrent Neural Networks and Universal Approximation of Bayesian Filters
A. Bishop
Edwin V. Bonilla
BDL
73
3
0
01 Nov 2022
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
46
0
0
02 Mar 2022
Conditional Approximate Normalizing Flows for Joint Multi-Step Probabilistic Forecasting with Application to Electricity Demand
Arec Jamgochian
Di Wu
Kunal Menda
Soyeon Jung
Mykel J. Kochenderfer
AI4TS
34
2
0
08 Jan 2022
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
54
1
0
02 Nov 2021
Scalable Inference in SDEs by Direct Matching of the Fokker-Planck-Kolmogorov Equation
Arno Solin
Ella Tamir
Prakhar Verma
54
19
0
29 Oct 2021
Active Learning in Gaussian Process State Space Model
H. Yu
Dingling Yao
Christoph Zimmer
Marc Toussaint
D. Nguyen-Tuong
GP
43
4
0
30 Jul 2021
A Framework for Machine Learning of Model Error in Dynamical Systems
Matthew E. Levine
Andrew M. Stuart
98
69
0
14 Jul 2021
Inferring the Structure of Ordinary Differential Equations
Juliane Weilbach
S. Gerwinn
Christian D. Weilbach
M. Kandemir
59
3
0
05 Jul 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
76
16
0
21 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
93
2
0
03 Jun 2021
Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes
Alexander von Rohr
Matthias Neumann-Brosig
Sebastian Trimpe
51
8
0
17 May 2021
Forecasting COVID-19 Counts At A Single Hospital: A Hierarchical Bayesian Approach
A. Lee
Panagiotis Lymperopoulos
Joshua T. Cohen
J. Wong
Michael C. Hughes
11
1
0
14 Apr 2021
State-space aerodynamic model reveals high force control authority and predictability in flapping flight
Y. Bayiz
Bo Cheng
38
11
0
14 Mar 2021
Keep it Simple: Data-efficient Learning for Controlling Complex Systems with Simple Models
Thomas Power
Dmitry Berenson
55
16
0
04 Feb 2021
Structure-preserving Gaussian Process Dynamics
K. Ensinger
Friedrich Solowjow
Sebastian Ziesche
Michael Tiemann
Sebastian Trimpe
71
9
0
02 Feb 2021
A Worrying Analysis of Probabilistic Time-series Models for Sales Forecasting
Seungjae Jung
KyungHyun Kim
Hanock Kwak
Young-Jin Park
AI4TS
23
6
0
21 Nov 2020
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
53
2
0
13 Oct 2020
Variational Filtering with Copula Models for SLAM
John D. Martin
Kevin Doherty
Caralyn Cyr
Brendan Englot
J. Leonard
51
3
0
02 Aug 2020
Learning Unstable Dynamical Systems with Time-Weighted Logarithmic Loss
Kamil Nar
Yuan Xue
Andrew M. Dai
38
2
0
10 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
71
56
0
30 Jun 2020
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
57
19
0
25 Jun 2020
Neural Physicist: Learning Physical Dynamics from Image Sequences
Baocheng Zhu
Shijun Wang
James Y. Zhang
AI4CE
23
1
0
09 Jun 2020
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
Steven Atkinson
42
8
0
07 Jun 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing
Feng Yin
Zhidi Lin
Yue Xu
Qinglei Kong
Deshi Li
Sergios Theodoridis
Shuguang Cui
Cui
FedML
135
4
0
08 Mar 2020
Safe Interactive Model-Based Learning
Marco Gallieri
Seyed Sina Mirrazavi Salehian
N. E. Toklu
A. Quaglino
Jonathan Masci
Jan Koutník
Faustino J. Gomez
70
12
0
15 Nov 2019
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
76
4
0
16 Jul 2019
The Use of Gaussian Processes in System Identification
Simo Särkkä
GP
AI4TS
40
10
0
13 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
54
0
0
03 Jul 2019
1
2
Next